Collaborative Filtering based on user trends

被引:0
作者
Symeonidis, Panagiotis [1 ]
Nanopoulos, Alexandros [1 ]
Papadopoulos, Apostolos [1 ]
Manolopoulos, Yannis [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Informat, GR-54124 Thessaloniki, Greece
来源
ADVANCES IN DATA ANALYSIS | 2007年
关键词
D O I
10.1007/978-3-540-70981-7_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommender systems base their operation on past user ratings over a collection of items, for instance, books, CDs, etc. Collaborative Filtering (CF) is a succesful recommendation technique. User ratings are not expected to be independent, as users follow trends of similar rating behavior. In terms of Text Mining, this is analogous to the formation of higher-level concepts from plain terms. In this paper, we propose a novel CF algorithm which uses Latent Semantic Indexing (LSI) to detect rating trends and performs recommendations according to them. Our results indicate its superiority over existing CF algorithms.
引用
收藏
页码:375 / +
页数:2
相关论文
共 7 条
  • [1] [Anonymous], 2000, ACM WEBKDD WORKSHOP
  • [2] Using linear algebra for intelligent information retrieval
    Berry, MW
    Dumais, ST
    OBrien, GW
    [J]. SIAM REVIEW, 1995, 37 (04) : 573 - 595
  • [3] FURNAS GW, 1988, P 11 ANN INT ACM SIG, P465
  • [4] USING COLLABORATIVE FILTERING TO WEAVE AN INFORMATION TAPESTRY
    GOLDBERG, D
    NICHOLS, D
    OKI, BM
    TERRY, D
    [J]. COMMUNICATIONS OF THE ACM, 1992, 35 (12) : 61 - 70
  • [5] McLaughlin M. R., 2004, Proceedings of Sheffield SIGIR 2004. The Twenty-Seventh Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P329, DOI 10.1145/1008992.1009050
  • [6] Resnick P, 1994, P ACM C COMP SUPP CO, P175, DOI DOI 10.1145/192844.192905
  • [7] Sarwar B, 2001, P 10 INT C WORLD WID, P285, DOI 10.1145/371920.372071