Non-Archimedean Nevanlinna theory in several variables and the non-Archimedean Nevanlinna inverse problem

被引:28
作者
Cherry, W [1 ]
Ye, ZA
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] No Illinois Univ, Dept Math, De Kalb, IL 60115 USA
关键词
non-Archimedean; Nevanlinna theory; p-adic; inverse problem; defect relations; projective space;
D O I
10.1090/S0002-9947-97-01874-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cartan's method is used to prove a several variable, non-Archimedean, Nevanlinna Second Main Theorem for hyperplanes in projective space. The corresponding defect relation is derived, but unlike in the complex case, we show that there can only be finitely many non-zero non-Archimedean defects. We then address the non-Archimedean Nevanlinna inverse problem, by showing that given a set of defects satisfying our conditions and a corresponding set of hyperplanes in projective space, there exists a non-Archimedean analytic function with the given defects at the specified hyperplanes, and with no other defects.
引用
收藏
页码:5043 / 5071
页数:29
相关论文
共 35 条
[1]   NON-ARCHIMEDIAN ANALYTIC FUNCTIONS TAKING SAME VALUES AT SAME POINTS [J].
ADAMS, WW ;
STRAUS, EG .
ILLINOIS JOURNAL OF MATHEMATICS, 1971, 15 (03) :418-&
[2]  
AHLFORS L, 1941, ACTA SOC SCI FENN, V3, P1
[3]  
[Anonymous], 1975, NOMBRES P ADIQUES
[4]  
Bosch S., 1984, Non-Archimedean analysis
[5]   P-ADIC NEVANLINNA THEOREM [J].
BOUTABAA, A .
MANUSCRIPTA MATHEMATICA, 1990, 67 (03) :251-269
[6]  
Boutabaa A., 1991, THESIS U PARIS 7, P7
[7]  
Boutabaa Abdelbaki, 1996, ANN FS TOULOUSE MATH, V5, P29
[8]   DEFECT RELATION FOR EQUIDIMENSIONAL HOLOMORPHIC MAPPINGS BETWEEN ALGEBRAIC VARIETIES [J].
CARLSON, J ;
GRIFFITHS, P .
ANNALS OF MATHEMATICS, 1972, 95 (03) :557-+
[9]  
Cartan H., 1933, Mathematica, V7, P5
[10]   NON-ARCHIMEDEAN ANALYTIC CURVES IN ABELIAN-VARIETIES [J].
CHERRY, W .
MATHEMATISCHE ANNALEN, 1994, 300 (03) :393-404