Multiple periodic solutions of Hamiltonian systems with prescribed energy

被引:1
作者
An, Tianqing [1 ]
机构
[1] Hohai Univ, Dept Appl Math, Nanjing 210098, Peoples R China
基金
中国国家自然科学基金;
关键词
critical point; Hamiltonian system; hypersurfaces of contact type; periodic solution; positive-type hypersurface;
D O I
10.1016/j.jde.2007.01.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the periodic solutions of autonomous Hamiltonian systems x = JVH(x) on the given compact energy hypersurface Sigma = H-1 (1). If Sigma is convex or star-shaped, there have been many remarkable contributions for existence and multiplicity of periodic solutions. It is a hard problem to discuss the multiplicity on general hypersurfaces of contact type. In this paper we prove a multiplicity result for periodic solutions on a special class of hypersurfaces of contact type more general than star-shaped ones. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:116 / 132
页数:17
相关论文
共 22 条
[1]   The brake orbits of Hamiltonian systems on positive-type hypersurfaces [J].
An, Tianqing .
POSITIVITY, 2006, 10 (04) :681-692
[2]   On the number of periodic orbits of Hamiltonian systems on positive-type hypersurfaces in R2n [J].
An, TQ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (04) :633-641
[3]   Existence of multiple periodic orbits of Hamiltonian systems on positive-type hypersurfaces in R2n [J].
An, TQ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 278 (02) :376-396
[4]   ON CRITICAL-POINT THEORY FOR INDEFINITE FUNCTIONALS IN THE PRESENCE OF SYMMETRIES [J].
BENCI, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 274 (02) :533-572
[5]   EXISTENCE OF MULTIPLE PERIODIC-ORBITS ON STAR-SHAPED HAMILTONIAN SURFACES [J].
BERESTYCKI, H ;
LASRY, JM ;
MANCINI, G ;
RUF, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (03) :253-289
[6]   Closed characteristics on partially symmetric compact convex hypersurfaces in R2n [J].
Dong, YJ ;
Long, YM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 196 (01) :226-248
[7]   CONVEX HAMILTONIAN ENERGY SURFACES AND THEIR PERIODIC TRAJECTORIES [J].
EKELAND, I ;
HOFER, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 113 (03) :419-469
[8]   ON THE NUMBER OF PERIODIC TRAJECTORIES FOR A HAMILTONIAN FLOW ON A CONVEX ENERGY SURFACE [J].
EKELAND, I ;
LASRY, JM .
ANNALS OF MATHEMATICS, 1980, 112 (02) :283-319
[9]   PERIODIC-SOLUTIONS OF SUPERQUADRATIC HAMILTONIAN-SYSTEMS [J].
FELMER, PL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 102 (01) :188-207
[10]  
GINZBURG V. L., 1995, INT MATH RES NOTICES, P83, DOI [DOI 10.1155/S1073792895000079, 10.1155/S1073792895000079]