共 50 条
New liquid carbon dioxide based strategy for high energy/power density LiFePO4
被引:57
|作者:
Hwang, Jieun
[1
]
Kong, Ki Chun
[2
]
Chang, Wonyoung
[3
]
Jo, Eunmi
[3
]
Nam, Kyungwan
[4
]
Kim, Jaehoon
[1
,5
]
机构:
[1] Sungkyunkwan Univ, Sch Mech Engn, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
[2] CM Partner INC, 810,Seoul Techno Pk,232, Seoul 01811, South Korea
[3] Korea Inst Sci & Technol, Ctr Energy Convergence, Hwarang Ro 14 Gil 5, Seoul 02792, South Korea
[4] Dongguk Univ, Dept Energy & Mat Engn, Seoul 04620, South Korea
[5] Sungkyunkwan Univ, SAINT, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
来源:
基金:
新加坡国家研究基金会;
关键词:
Lithium iron phosphate;
Liquid carbon dioxide;
Uniform carbon coating;
Hierarchical structure lithium ion batteries;
CATHODE MATERIAL;
ELECTROCHEMICAL PERFORMANCE;
OLIVINE LIFEPO4;
CONDUCTIVE NETWORK;
NANOPOROUS CARBON;
RATE CAPABILITY;
QUANTUM-DOTS;
LITHIUM;
MICROSPHERES;
STORAGE;
D O I:
10.1016/j.nanoen.2017.04.046
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
A liquid carbon dioxide (l-CO2) based coating approach is developed for ultrathin, uniform, and conformal carbon coating of hierarchically mesoporous LiFePO4 (LFP) nano/microspheres for fabricating high-energy-density and high-power-density carbon coated LFP (C-LFP) with long-term cyclability. The unique properties of l-CO2 result in an ultrathin carbon layer (1.9 nm) distributed all over the primary nano-sized LFP particles (20-140 nm in diameter), forming a core (LFP)-shell (carbon) structure. This unique structure provides facile penetration of liquid electrolytes and rapid electron and Li-ion transport. C-LFP exhibits high reversible capacity, high energy and power density (168 mAh g(-1) at 0.1 C, 109 Wh kg(-1) and 3.3 kW kg(-1) at 30 C, respectively) with excellent long-term cyclability (84% cycle retention at 10 C after 1000 cycles). In addition, the ultrathin and uniform carbon layer of the mesoporous microspheres allows a high tap density (1.4 g cm(-3)) resulting in a high volumetric energy density (458 Wh L-1 at a 30 C rate). Furthermore, C-LFP presents a high capacity and stable cycling performance under low-temperature and high-temperature environment. Well-developed carbon coating approach in this study is simple, scalable, and environmentally benign, making it very promising for commercial-scale production of electrode materials for large-scale Li-ion battery applications.
引用
收藏
页码:398 / 410
页数:13
相关论文