The hierarchy of multi-soliton solutions of the derivative nonlinear Schrodinger equation

被引:79
作者
Steudel, H [1 ]
机构
[1] Humboldt Univ, Inst Phys, D-10115 Berlin, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 07期
关键词
D O I
10.1088/0305-4470/36/7/309
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a relatively simple approach to Backlund transformations for the derivative nonlinear Schrodinger equation. By iteration it leads to compact N-soliton formulae both with asymptotically vanishing and non-vanishing amplitudes. The phenomenology of these solutions is discussed and illustrated in some detail.
引用
收藏
页码:1931 / 1946
页数:16
相关论文
共 37 条
[1]   NON-LINEAR ASYMMETRIC SELF-PHASE MODULATION AND SELF-STEEPENING OF PULSES IN LONG OPTICAL-WAVEGUIDES [J].
ANDERSON, D ;
LISAK, M .
PHYSICAL REVIEW A, 1983, 27 (03) :1393-1398
[2]   Soliton approach to magnetic holes [J].
Baumgärtel, K .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1999, 104 (A12) :28295-28308
[3]  
Crum M. M., 1955, QUART J MATH OXFORD, V6, P121, DOI DOI 10.1093/QMATH/6.1.121
[4]  
Darboux G., 1882, CR HEBD ACAD SCI, V94, P1456
[5]  
EICHHORN H, 1987, ANN PHYS-LEIPZIG, V44, P261, DOI 10.1002/andp.19874990404
[6]  
Gerdjikov V. S., 1983, Bulgarian Journal of Physics, V10, P13
[7]   QUADRATIC BUNDLE AND NON-LINEAR EQUATIONS [J].
GERDZHIKOV, VS ;
IVANOV, MI ;
KULISH, PP .
THEORETICAL AND MATHEMATICAL PHYSICS, 1980, 44 (03) :784-795
[8]   STABILITY AND BIFURCATION OF QUASIPARALLEL ALFVEN SOLITONS [J].
HAMILTON, RL ;
KENNEL, CF ;
MJOLHUS, E .
PHYSICA SCRIPTA, 1992, 46 (03) :230-236
[9]   ON THE DERIVATIVE NONLINEAR SCHRODINGER-EQUATION [J].
HAYASHI, N ;
OZAWA, T .
PHYSICA D, 1992, 55 (1-2) :14-36
[10]   ALFVEN SOLITONS [J].
HUANG, NN ;
CHEN, ZY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (04) :439-453