Incompleteness of the linear span of the positive compact operators

被引:11
作者
Chen, ZL [1 ]
Wickstead, AW [1 ]
机构
[1] Queens Univ Belfast, Dept Pure Math, Belfast BT7 1NN, Antrim, North Ireland
关键词
compact operators; regular operators;
D O I
10.1090/S0002-9939-97-04220-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that even in the case of a Banach lattice E with an order continuous norm (or whose dual has an order continuous norm) the linear span of the positive compact operators on E need not be complete under the regular norm.
引用
收藏
页码:3381 / 3389
页数:9
相关论文
共 15 条
[1]  
Abramovich Y.A., 1994, IR MATH SOC B, V32, P32
[2]   A COMPACT REGULAR OPERATOR WITHOUT MODULUS [J].
ABRAMOVICH, YA ;
WICKSTEAD, AW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (03) :721-726
[3]   SOLUTIONS OF SEVERAL PROBLEMS IN THE THEORY OF COMPACT POSITIVE OPERATORS [J].
ABRAMOVICH, YA ;
WICKSTEAD, AW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (10) :3021-3026
[4]  
Aliprantis C. D., 1985, POSITIVE OPERATORS
[5]   IDEALS OF REGULAR OPERATORS ON L2 [J].
ARENDT, W ;
SOUROUR, AR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (01) :93-96
[6]   ON THE O-SPECTRUM OF REGULAR OPERATORS AND THE SPECTRUM OF MEASURES [J].
ARENDT, W .
MATHEMATISCHE ZEITSCHRIFT, 1981, 178 (02) :271-287
[7]  
Arendt W., 1986, INDAG MATH, V48, P109, DOI [10.1016/S1385-7258(86)80001-4, DOI 10.1016/S1385-7258(86)80001-4]
[8]   COMPACT-OPERATORS IN BANACH-LATTICES [J].
DODDS, PG ;
FREMLIN, DH .
ISRAEL JOURNAL OF MATHEMATICS, 1979, 34 (04) :287-320
[9]   REMARK ON MODULUS OF COMPACT OPERATORS [J].
KRENGEL, U .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (1P1) :132-&
[10]  
Krengel Ulrich, 1963, MATH SCAND, V13, P151