Saddle-node bifurcation: Appearance mechanism of pulses in the subcritical complex Ginzburg-Landau equation

被引:37
作者
Descalzi, O
Argentina, M
Tirapegui, E
机构
[1] Univ Los Andes, Fac Ingn, Santiago, Chile
[2] FCFM Univ Chile, Dept Fis, Santiago, Chile
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 01期
关键词
D O I
10.1103/PhysRevE.67.015601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study stationary, localized solutions in the complex subcritical Ginzburg-Landau equation in the region where there exists coexistence of homogeneous attractors. Using a matching approach, we report on the fact that the appearance of pulses are related to a saddle-node bifurcation. Numerical simulations are in good agreement with our theoretical predictions.
引用
收藏
页数:4
相关论文
共 31 条
[1]   Three forms of localized solutions of the quintic complex Ginzburg-Landau equation [J].
Afanasjev, VV ;
Akhmediev, N ;
SotoCrespo, JM .
PHYSICAL REVIEW E, 1996, 53 (02) :1931-1939
[2]   Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation [J].
Akhmediev, NN ;
Afanasjev, VV ;
SotoCrespo, JM .
PHYSICAL REVIEW E, 1996, 53 (01) :1190-1201
[3]   Formation of periodic and localized patterns in an oscillating granular layer [J].
Aranson, IS ;
Tsimring, LS .
PHYSICA A, 1998, 249 (1-4) :103-110
[4]   THE DYNAMICS OF COUPLED CURRENT-BIASED JOSEPHSON JUNCTIONS - PART II [J].
Aronson, D. G. ;
Doedel, E. J. ;
Othmer, H. G. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (01) :51-66
[5]   PROPAGATIVE PHASE DYNAMICS IN TEMPORALLY INTERMITTENT SYSTEMS [J].
BRACHET, ME ;
COULLET, P ;
FAUVE, S .
EUROPHYSICS LETTERS, 1987, 4 (09) :1017-1022
[6]   Stable static localized structures in one dimension [J].
Coullet, P ;
Riera, C ;
Tresser, C .
PHYSICAL REVIEW LETTERS, 2000, 84 (14) :3069-3072
[7]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[8]   THE EFFECT OF NONLINEAR GRADIENT TERMS ON LOCALIZED STATES NEAR A WEAKLY INVERTED BIFURCATION [J].
DEISSLER, RJ ;
BRAND, HR .
PHYSICS LETTERS A, 1990, 146 (05) :252-255
[9]   PERIODIC, QUASI-PERIODIC, AND CHAOTIC LOCALIZED SOLUTIONS OF THE QUINTIC COMPLEX GINZBURG-LANDAU EQUATION [J].
DEISSLER, RJ ;
BRAND, HR .
PHYSICAL REVIEW LETTERS, 1994, 72 (04) :478-481
[10]   2-DIMENSIONAL LOCALIZED SOLUTIONS FOR SUBCRITICAL BIFURCATIONS IN SYSTEMS WITH BROKEN ROTATIONAL SYMMETRY [J].
DEISSLER, RJ ;
BRAND, HR .
PHYSICAL REVIEW E, 1995, 51 (02) :R852-R855