Y Quasi-quantum groups obtained from the Tannaka-Krein reconstruction theorem

被引:0
|
作者
Bulacu, D. [1 ]
Torrecillas, B. [2 ]
机构
[1] Univ Bucharest, Fac Math & Informat, Str Acad 14, Bucharest 010014 1, Romania
[2] Univ Almeria, Dept Algebra & Anal, Almeria 04071, Spain
关键词
DIAGONAL CROSSED-PRODUCTS; HOPF-ALGEBRAS; MODULES;
D O I
10.1090/conm/751/15086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We review the reconstruction theorem for quasi-quantum groups, also known as quasitriangular (QT for short) quasi-Hopf algebras. It allows to obtain for free the QT quasi-Hopf algebra structure of the quantum double of a quasi-Hopf algebra, as well as the biproduct quasi-Hopf algebra structure built on a smash product algebra. Our monoidal categorical approach can be used in order to obtain similar structures for different Hopf like algebras, too.
引用
收藏
页码:61 / 97
页数:37
相关论文
共 39 条
  • [21] QUASI-QUANTUM PLANES AND QUASI-QUANTUM GROUPS OF DIMENSION p3 AND p4
    Huang, Hua-Lin
    Yang, Yuping
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (10) : 4245 - 4260
  • [22] Finite quasi-quantum groups of diagonal type
    Huang, Hua-Lin
    Liu, Gongxiang
    Yang, Yuping
    Ye, Yu
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 759 : 201 - 243
  • [23] Star-products and quasi-quantum groups
    Mansour, M
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (12) : 2995 - 3013
  • [24] Finite quasi-quantum groups of diagonal type
    Huang, Hua-Lin
    Liu, Gongxiang
    Yang, Yuping
    Ye, Yu
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 2020 (759): : 201 - 243
  • [25] Quivers, Quasi-Quantum Groups and Finite Tensor Categories
    Hua-Lin Huang
    Gongxiang Liu
    Yu Ye
    Communications in Mathematical Physics, 2011, 303 : 595 - 612
  • [26] On nondiagonal finite quasi-quantum groups over finite abelian groups
    Huang, Hua-Lin
    Yang, Yuping
    Zhang, Yinhuo
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (05): : 4197 - 4221
  • [27] Diagonal crossed products by duals of quasi-quantum groups
    Hausser, F
    Nill, F
    REVIEWS IN MATHEMATICAL PHYSICS, 1999, 11 (05) : 553 - 629
  • [28] Quivers, Quasi-Quantum Groups and Finite Tensor Categories
    Huang, Hua-Lin
    Liu, Gongxiang
    Ye, Yu
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 303 (03) : 595 - 612
  • [29] The representation-theoretic rank of the doubles of quasi-quantum groups
    Bulacu, Daniel
    Torrecillas, Blas
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (04) : 919 - 940
  • [30] On nondiagonal finite quasi-quantum groups over finite abelian groups
    Hua-Lin Huang
    Yuping Yang
    Yinhuo Zhang
    Selecta Mathematica, 2018, 24 : 4197 - 4221