Revealing the Sodium Storage Mechanism in High-Temperature-Synthesized Silicon Oxycarbides

被引:23
作者
Chandra, Christian [1 ]
Cahyadi, Handi Setiadi [2 ]
Alvin, Stevanus [2 ]
Devina, Winda [2 ]
Park, Jae-Ho [4 ]
Chang, Wonyoung [4 ]
Chung, Kyung Yoon [4 ]
Kwak, Sang Kyu [5 ]
Kim, Jaehoon [1 ,2 ,3 ]
机构
[1] Sungkyunkwan Univ, Sch Mech Engn, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
[2] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
[3] Sungkyunkwan Univ, Sch Chem Engn, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
[4] Korea Inst Sci & Technol, Ctr Energy Storage Res, Hwarangno 14 Gil 5, Seoul 02792, South Korea
[5] Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, 50 Unist Gil, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
HARD CARBON ANODES; NA-ION BATTERIES; HIGH-PERFORMANCE ANODE; RICH SIOC ANODES; AMORPHOUS-SILICON; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; LITHIUM STORAGE; COMPOSITE ANODE; STABLE ANODE;
D O I
10.1021/acs.chemmater.9b04018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon oxycarbides (SiOCs) are considered promising anode materials for sodium-ion batteries. However, the mechanisms of Nation storage in SiOCs are not clear. In this study, the mechanism of Nation storage in high-temperature-synthesized SiOCs (1200-1400 degrees C) is examined. Phase separation of the oxygen (O)-rich and carbon (C)-rich SiOxCy domains of SiOC during synthesis was accompanied by the evolution of micropores, graphitic layers, and a silicon carbide (SiC) phase. The high-temperature-synthesized SiOCs exhibited a large voltage plateau capacity below 0.1 V (45-63% of the total capacity). Ex situ measurements and density functional theory simulations revealed that within the sloping voltage region, Nation uptake occurs mainly in the defects, micropores, C-rich SiOxCy phase, and some O-rich SiOxCy phases. In contrast, in the voltage plateau below 0.1 V, Na+-ion insertion into the O-rich SiOxCy phase and formation of Na-rich Si compounds are the main Nation uptake mechanisms. The generated SiC phase confers excellent long-term cyclability to the high-temperature-synthesized SiOxCy.
引用
收藏
页码:410 / 423
页数:14
相关论文
共 87 条
[31]   Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium-Ion Batteries by Making Use of Co-Intercalation Phenomena [J].
Jache, Birte ;
Adelhelm, Philipp .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (38) :10169-10173
[32]   Electrochemical Performance of Electrospun carbon nanofibers as free-standing and binder-free anodes for Sodium-Ion and Lithium-Ion Batteries [J].
Jin, Juan ;
Shi, Zhi-qiang ;
Wang, Cheng-yang .
ELECTROCHIMICA ACTA, 2014, 141 :302-310
[33]   Atom-Level Understanding of the Sodiation Process in Silicon Anode Material [J].
Jung, Sung Chul ;
Jung, Dae Soo ;
Choi, Jang Wook ;
Han, Young-Kyu .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (07) :1283-1288
[34]   SiOC(N)/Hard Carbon Composite Anodes for Na-Ion Batteries: Influence of Morphology on the Electrochemical Properties [J].
Kaspar, Jan ;
Storch, Mathias ;
Schitco, Cristina ;
Riedel, Ralf ;
Graczyk-Zajac, Magdalena .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (02) :A156-A162
[35]   Determination of the chemical diffusion coefficient of Li-ions in carbon-rich silicon oxycarbide anodes by electro-analytical methods [J].
Kaspar, Jan ;
Graczyk-Zajac, Magdalena ;
Riedel, Ralf .
ELECTROCHIMICA ACTA, 2014, 115 :665-670
[36]   Carbon-rich SiOC anodes for lithium-ion batteries: Part II. Role of thermal cross-linking [J].
Kaspar, Jan ;
Graczyk-Zajac, Magdalena ;
Riedel, Ralf .
SOLID STATE IONICS, 2012, 225 :527-531
[37]   Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries [J].
Komaba, Shinichi ;
Murata, Wataru ;
Ishikawa, Toru ;
Yabuuchi, Naoaki ;
Ozeki, Tomoaki ;
Nakayama, Tetsuri ;
Ogata, Atsushi ;
Gotoh, Kazuma ;
Fujiwara, Kazuya .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (20) :3859-3867
[38]   CuV2S4: A High Rate Capacity and Stable Anode Material for Sodium Ion Batteries [J].
Krengel, Markus ;
Hansen, Anna-Lena ;
Kaus, Maximilian ;
Indris, Sylvio ;
Wolff, Nildas ;
Kienle, Lorenz ;
Westfal, David ;
Bensch, Wolfgang .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (25) :21283-21291
[39]   Comparative computational study of the energetics of Li, Na, and Mg storage in amorphous and crystalline silicon [J].
Legrain, Fleur ;
Malyi, Oleksandr I. ;
Manzhos, Sergei .
COMPUTATIONAL MATERIALS SCIENCE, 2014, 94 :214-217
[40]   Hard carbon anodes of sodium-ion batteries: undervalued rate capability [J].
Li, Zhifei ;
Jian, Zelang ;
Wang, Xingfeng ;
Rodriguez-Perez, Ismael A. ;
Bommier, Clement ;
Ji, Xiulei .
CHEMICAL COMMUNICATIONS, 2017, 53 (17) :2610-2613