Revealing the Sodium Storage Mechanism in High-Temperature-Synthesized Silicon Oxycarbides

被引:23
作者
Chandra, Christian [1 ]
Cahyadi, Handi Setiadi [2 ]
Alvin, Stevanus [2 ]
Devina, Winda [2 ]
Park, Jae-Ho [4 ]
Chang, Wonyoung [4 ]
Chung, Kyung Yoon [4 ]
Kwak, Sang Kyu [5 ]
Kim, Jaehoon [1 ,2 ,3 ]
机构
[1] Sungkyunkwan Univ, Sch Mech Engn, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
[2] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
[3] Sungkyunkwan Univ, Sch Chem Engn, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
[4] Korea Inst Sci & Technol, Ctr Energy Storage Res, Hwarangno 14 Gil 5, Seoul 02792, South Korea
[5] Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, 50 Unist Gil, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
HARD CARBON ANODES; NA-ION BATTERIES; HIGH-PERFORMANCE ANODE; RICH SIOC ANODES; AMORPHOUS-SILICON; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; LITHIUM STORAGE; COMPOSITE ANODE; STABLE ANODE;
D O I
10.1021/acs.chemmater.9b04018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon oxycarbides (SiOCs) are considered promising anode materials for sodium-ion batteries. However, the mechanisms of Nation storage in SiOCs are not clear. In this study, the mechanism of Nation storage in high-temperature-synthesized SiOCs (1200-1400 degrees C) is examined. Phase separation of the oxygen (O)-rich and carbon (C)-rich SiOxCy domains of SiOC during synthesis was accompanied by the evolution of micropores, graphitic layers, and a silicon carbide (SiC) phase. The high-temperature-synthesized SiOCs exhibited a large voltage plateau capacity below 0.1 V (45-63% of the total capacity). Ex situ measurements and density functional theory simulations revealed that within the sloping voltage region, Nation uptake occurs mainly in the defects, micropores, C-rich SiOxCy phase, and some O-rich SiOxCy phases. In contrast, in the voltage plateau below 0.1 V, Na+-ion insertion into the O-rich SiOxCy phase and formation of Na-rich Si compounds are the main Nation uptake mechanisms. The generated SiC phase confers excellent long-term cyclability to the high-temperature-synthesized SiOxCy.
引用
收藏
页码:410 / 423
页数:14
相关论文
共 87 条
[1]   Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries [J].
Alcántara, R ;
Lavela, P ;
Ortiz, GF ;
Tirado, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (04) :A222-A225
[2]   Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries [J].
Alvin, Stevanus ;
Yoon, Dohyeon ;
Chandra, Christian ;
Susanti, Ratna F. ;
Chang, Wonyoung ;
Ryu, Changkook ;
Kim, Jaehoon .
JOURNAL OF POWER SOURCES, 2019, 430 :157-168
[3]   Revealing sodium ion storage mechanism in hard carbon [J].
Alvin, Stevanus ;
Yoon, Dohyeon ;
Chandra, Christian ;
Cahyadi, Handi Setiadi ;
Park, Jae-Ho ;
Chang, Wonyoung ;
Chung, Kyung Yoon ;
Kim, Jaehoon .
CARBON, 2019, 145 :67-81
[4]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[5]   Mechanisms responsible for chemical shifts of core-level binding energies and their relationship to chemical bonding [J].
Bagus, PS ;
Illas, F ;
Pacchioni, G ;
Parmigiani, F .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 1999, 100 :215-236
[6]   Elucidation of the Sodium-Storage Mechanism in Hard Carbons [J].
Bai, Panxing ;
He, Yongwu ;
Zou, Xiaoxi ;
Zhao, Xinxin ;
Xiong, Peixun ;
Xu, Yunhua .
ADVANCED ENERGY MATERIALS, 2018, 8 (15)
[7]   Stable and Efficient Li-Ion Battery Anodes Prepared from Polymer-Derived Silicon Oxycarbide-Carbon Nanotube Shell/Core Composites [J].
Bhandavat, R. ;
Singh, G. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (23) :11899-11905
[8]   Polymer-derived SiOC-CNT paper as lithium-ion battery anodes [J].
Bhandavat, Romil ;
Cologna, Marco ;
Singh, Gurpreet .
NANOMATERIALS AND ENERGY, 2012, 1 (01) :57-61
[9]   New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon [J].
Bommier, Clement ;
Surta, Todd Wesley ;
Dolgos, Michelle ;
Ji, Xiulei .
NANO LETTERS, 2015, 15 (09) :5888-5892
[10]  
Cesiulis H, 2016, NANOSCI TECHNOL, P3, DOI 10.1007/978-3-319-30198-3_1