Milnor-type theorems for left-invariant Riemannian metrics on Lie groups

被引:14
作者
Hashinaga, Takahiro [1 ,2 ]
Tamaru, Hiroshi [1 ]
Terada, Kazuhiro [1 ,3 ]
机构
[1] Hiroshima Univ, Dept Math, Higashihiroshima 7398526, Japan
[2] Kitakyushu Coll, Natl Inst Technol, Dept Creat Engn, Fukuoka 8020985, Japan
[3] SystemSoft Corp, Minato Ku, Tokyo 1050013, Japan
关键词
Lie groups; left-invariant Riemannian metrics; Milnor frames; Milnor-type theorems; Ricci signatures; solvsolitons; RICCI FLOW; EINSTEIN; SOLVMANIFOLDS; CURVATURES;
D O I
10.2969/jmsj/06820669
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For all left-invariant Riemannian metrics on three-dimensional unimodular Lie groups, there exist particular left-invariant orthonormal frames, so-called Milnor frames. In this paper, for any left-invariant Riemannian metrics on any Lie groups, we give a procedure to obtain an analogous of Milnor frames, in the sense that the bracket relations among them can be written with relatively smaller number of parameters. Our procedure is based on the moduli space of left-invariant Riemannian metrics. Some explicit examples of such frames and applications will also be given.
引用
收藏
页码:669 / 684
页数:16
相关论文
共 18 条
[1]  
[Чебарыков Михаил Сергеевич Chebarikov Michael S.], 2014, [Владикавказский математический журнал, Vladikavkazskii matematicheskii zhurnal], V16, P57
[2]  
Chow B., 2004, Mathematical Surveys and Monographs, V110
[3]   Left invariant metrics and curvatures on simply connected three-dimensional Lie groups [J].
Ha, Ku Yong ;
Lee, Jong Bum .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (06) :868-898
[4]  
Hashinaga T., ARXIV150105513
[5]   Noncompact homogeneous Einstein spaces [J].
Heber, J .
INVENTIONES MATHEMATICAE, 1998, 133 (02) :279-352
[6]   Concerning the existence of Einstein and Ricci soliton metrics on solvable Lie groups [J].
Jablonski, Michael .
GEOMETRY & TOPOLOGY, 2011, 15 (02) :735-764
[7]   The space of left-invariant metrics on a Lie group up to isometry and scaling [J].
Kodama, Hiroshi ;
Takahara, Atsushi ;
Tamaru, Hiroshi .
MANUSCRIPTA MATHEMATICA, 2011, 135 (1-2) :229-243
[8]  
Kremlev A. G., 2009, Siberian Adv. Math., V19, P245
[9]  
Kremlev AG., 2010, SIBERIAN ADV MATH, V20, P1
[10]  
Lauret J, 2013, P AM MATH SOC, V141, P3651