Distillation of Gaussian Einstein-Podolsky-Rosen steering with noiseless linear amplification

被引:26
作者
Liu, Yang [1 ,2 ]
Zheng, Kaimin [3 ,4 ]
Kang, Haijun [1 ,2 ]
Han, Dongmei [1 ,2 ]
Wang, Meihong [1 ,2 ]
Zhang, Lijian [3 ,4 ]
Su, Xiaolong [1 ,2 ]
Peng, Kunchi [1 ,2 ]
机构
[1] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Key Lab Intelligent Opt Sensing & Manipulat, Coll Engn & Appl Sci, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
ENTANGLEMENT DISTILLATION; QUANTUM;
D O I
10.1038/s41534-022-00549-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Einstein-Podolsky-Rosen (EPR) steering is one of the most intriguing features of quantum mechanics and an important resource for quantum communication. For practical applications, it remains a challenge to protect EPR steering from decoherence due to its intrinsic difference from entanglement. Here, we experimentally demonstrate the distillation of Gaussian EPR steering and entanglement in lossy and noisy environments using measurement-based noiseless linear amplification. Different from entanglement distillation, the extension of steerable region happens in the distillation of EPR steering, besides the enhancement of steerabilities. We demonstrate that the two-way or one-way steerable region is extended after the distillation of EPR steering when the NLA is implemented based on Bob's or Alice's measurement results. We also show that the NLA helps to extract the secret key from the insecure region in one-sided device-independent quantum key distribution with EPR steering. Our work paves the way for quantum communication exploiting EPR steering in practical quantum channels.
引用
收藏
页数:7
相关论文
共 40 条
[1]  
Armstrong S, 2015, NAT PHYS, V11, P167, DOI [10.1038/NPHYS3202, 10.1038/nphys3202]
[2]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[3]   Theoretical analysis of an ideal noiseless linear amplifier for Einstein-Podolsky-Rosen entanglement distillation [J].
Bernu, J. ;
Armstrong, S. ;
Symul, T. ;
Ralph, T. C. ;
Lam, P. K. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2014, 47 (21)
[4]   Heralded noiseless linear amplification and quantum channels [J].
Blandino, Remi ;
Barbieri, Marco ;
Grangier, Philippe ;
Tualle-Brouri, Rosa .
PHYSICAL REVIEW A, 2015, 91 (06)
[5]   One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering [J].
Branciard, Cyril ;
Cavalcanti, Eric G. ;
Walborn, Stephen P. ;
Scarani, Valerio ;
Wiseman, Howard M. .
PHYSICAL REVIEW A, 2012, 85 (01)
[6]   Demonstration of Einstein-Podolsky-Rosen Steering Using Hybrid Continuous- and Discrete-Variable Entanglement of Light [J].
Cavailles, A. ;
Le Jeannic, H. ;
Raskop, J. ;
Guccione, G. ;
Markham, D. ;
Diamanti, E. ;
Shaw, M. D. ;
Verma, V. B. ;
Nam, S. W. ;
Laurat, J. .
PHYSICAL REVIEW LETTERS, 2018, 121 (17)
[7]   Quantum steering: a review with focus on semidefinite programming [J].
Cavalcanti, D. ;
Skrzypczyk, P. .
REPORTS ON PROGRESS IN PHYSICS, 2017, 80 (02)
[8]   Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox [J].
Cavalcanti, E. G. ;
Jones, S. J. ;
Wiseman, H. M. ;
Reid, M. D. .
PHYSICAL REVIEW A, 2009, 80 (03)
[9]   No-cloning of quantum steering [J].
Chiu, Ching-Yi ;
Lambert, Neill ;
Liao, Teh-Lu ;
Nori, Franco ;
Li, Che-Ming .
NPJ QUANTUM INFORMATION, 2016, 2
[10]  
Chrzanowski HM, 2014, NAT PHOTONICS, V8, P333, DOI [10.1038/nphoton.2014.49, 10.1038/NPHOTON.2014.49]