Construction of Cu@ZnO nanobrushes based on Cu nanowires and their high-performance selective degradation of polycyclic aromatic hydrocarbons

被引:35
作者
Chen, Hanxing [1 ]
Wen, Ming [1 ]
Huang, Zaidi [1 ]
Wu, Qingsheng [1 ]
Liu, Jiali [1 ]
Tu, Teng [1 ]
机构
[1] Tongji Univ, Dept Chem, Minist Educ, Key Lab Yangtze River Water Environm, Shanghai 200092, Peoples R China
关键词
CATALYTIC-ACTIVITY; ROOM-TEMPERATURE; BENZENE OXIDATION; SILVER NANOWIRES; PT/TIO2; CATALYST; AG-ZNO; NANORODS; NANOPARTICLES; FORMALDEHYDE; GROWTH;
D O I
10.1039/c4ta05204h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Highly active Cu@ZnO brush-like nanostructures have been successfully synthesized through the heteroepitaxial growth process of ZnO branched nanorods (NRs) based on Cu core nanowires (NWs), and used for the evaluation of selective catalytic degradation for polycyclic aromatic compounds. The resultant Cu@ZnO nanobrushes, with the main diameter of similar to 500 nm, consist of Cu core NWs with diameter of similar to 50 nm and outer ZnO branch NRs shells with thickness of similar to 250 nm. The as-designed Cu@ZnO nanobrushes exhibit high performance for the selective catalytic degradation of polycyclic aromatic compounds. Nearly 90% conversion with the reaction rate constant (k) of 0.012 min(-1) can be achieved for anthracene, while only about 50% and 10% conversions are shown for phenanthrene and naphthalene, respectively. Besides the highly efficient transportation of electrons, Cu NWs have strong capacity for oxygen activation which results in the gathering of negative charges and rich chemisorbed oxygen onto the surface, which is responsible for the high catalytic efficiency of Cu@ZnO nanobrushes toward the selective degradation of anthracene.
引用
收藏
页码:600 / 607
页数:8
相关论文
共 46 条
[1]   Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells [J].
Costi, Ronny ;
Saunders, Aaron E. ;
Elmalem, Einat ;
Salant, Asaf ;
Banin, Uri .
NANO LETTERS, 2008, 8 (02) :637-641
[2]   Palladium nanoparticles by electrospinning from poly(acrylonitrile-co-acrylic acid)-PdCl2 solutions.: Relations between preparation conditions, particle size, and catalytic activity [J].
Demir, MM ;
Gulgun, MA ;
Menceloglu, YZ ;
Erman, B ;
Abramchuk, SS ;
Makhaeva, EE ;
Khokhlov, AR ;
Matveeva, VG ;
Sulman, MG .
MACROMOLECULES, 2004, 37 (05) :1787-1792
[3]   Facet-Selective Epitaxial Growth of Heterogeneous Nanostructures of Semiconductor and Metal: ZnO Nanorods on Ag Nanocrystals [J].
Fan, Feng-Ru ;
Ding, Yong ;
Liu, De-Yu ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (34) :12036-+
[4]   Applications of Fluorescence Spectroscopy for Predicting Percent Wastewater in an Urban Stream [J].
Goldman, Jami H. ;
Rounds, Stewart A. ;
Needoba, Joseph A. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (08) :4374-4381
[5]   Low-temperature wafer-scale production of ZnO nanowire arrays [J].
Greene, LE ;
Law, M ;
Goldberger, J ;
Kim, F ;
Johnson, JC ;
Zhang, YF ;
Saykally, RJ ;
Yang, PD .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (26) :3031-3034
[6]   Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles [J].
Gu, HW ;
Zheng, RK ;
Zhang, XX ;
Xu, B .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (18) :5664-5665
[7]   Selective growth of metal and binary metal tips on CdS nanorods [J].
Habas, Susan E. ;
Yang, Peidong ;
Mokari, Taleb .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (11) :3294-+
[8]   Ag-ZnO catalysts for UV-photodegradation of methylene blue [J].
Height, MJ ;
Pratsinis, SE ;
Mekasuwandumrong, O ;
Praserthdam, P .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2006, 63 (3-4) :305-312
[9]   Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes [J].
Hu, Liangbing ;
Kim, Han Sun ;
Lee, Jung-Yong ;
Peumans, Peter ;
Cui, Yi .
ACS NANO, 2010, 4 (05) :2955-2963
[10]   Complete Oxidation of Formaldehyde at Room Temperature Using TiO2 Supported Metallic Pd Nanoparticles [J].
Huang, Haibao ;
Leung, Dennis Y. C. .
ACS CATALYSIS, 2011, 1 (04) :348-354