Ti2AlN thin films synthesized by annealing of (Ti plus Al)/AlN multilayers

被引:27
|
作者
Cabioch, Thierry [1 ]
Alkazaz, Malaz [1 ]
Beaufort, Marie-France [1 ]
Nicolai, Julien [1 ]
Eyidi, Dominique [1 ]
Eklund, Per [1 ,2 ]
机构
[1] Univ Poitiers, UPR 3346, Inst Pprime, SP2MI Blvd 3,Teleport 2 BP 30179, F-86962 Futuroscope, France
[2] Linkoping Univ, IFM, Thin Film Phys Div, S-58183 Linkoping, Sweden
基金
欧洲研究理事会;
关键词
Annealing; MAX phases; Thin films; Multilayer; OHMIC CONTACTS; DEGREES-C; CRYSTALLIZATION KINETICS; M(N+1)AX(N) PHASES; SPUTTER-DEPOSITION; MATERIALS SCIENCE; CR2ALC; TI3SIC2; TI; STEM;
D O I
10.1016/j.materresbull.2016.03.031
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Single-phase Ti2AlN thin films were obtained by annealing in vacuum of (Ti + Al)/AIN multilayers deposited at room temperature by magnetron sputtering onto single-crystalline (0001) 4H-SiC and (0001) Al2O3 substrates. In-situ X-ray diffraction experiments combined with ex-situ cross-sectional transmission electron microscopy observations reveal that interdiffusion processes occur in the multilayer at a temperature of similar to 400 degrees C leading to the formation of a (Ti, Al, N) solid solution, having the hexagonal structure of alpha-Ti, whereas the formation of Ti2AlN occurs at 550-600 degrees C. Highly oriented (0002) Ti2AlN thin films can be obtained after an annealing at 750 degrees C. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:58 / 63
页数:6
相关论文
共 50 条
  • [41] Microstructural evolution during high-temperature oxidation of spark plasma sintered Ti2AlN ceramics
    Cui, Bai
    Sa, Rafael
    Jayaseelan, Daniel D.
    Inam, Fawad
    Reece, Michael J.
    Lee, William Edward
    ACTA MATERIALIA, 2012, 60 (03) : 1079 - 1092
  • [42] Microstructure, densification, microhardness and antioxidant properties of Ti2AlN/TiN FGM fabricated by hot-pressing
    Yanlin Chen
    Zongyu Li
    Jun Tang
    Chengwen Zeng
    Wei Gao
    Yan Xiong
    Ming Yan
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2014, 29 : 1173 - 1177
  • [43] Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique
    Wang, Zhenyu
    Liu, Jingzhou
    Wang, Li
    Li, Xiaowei
    Ke, Peiling
    Wang, Aiying
    APPLIED SURFACE SCIENCE, 2017, 396 : 1435 - 1442
  • [44] Dry-Sliding Tribological Properties of TiAl Alloys and Ti2AlN/TiAl Composites at High Temperature
    Ningbo Zhang
    Dongli Sun
    Xiuli Han
    Daqun Wang
    Qing Wang
    Hao Liu
    Zhenhe Yu
    Journal of Materials Engineering and Performance, 2018, 27 : 6107 - 6117
  • [45] Investigating the piezoelectric response of Mg-Ti-doped-AlN thin films for sensor application
    Anggraini, S. A.
    Uehara, M.
    Yamada, H.
    Akiyama, M.
    2017 IEEE SENSORS, 2017, : 229 - 231
  • [46] The effect of interlayer composition and thickness on the stabilization of cubic AlN in AlN/Ti-Al-N superlattices
    Chawla, Vipin
    Holec, David
    Mayrhofer, Paul H.
    THIN SOLID FILMS, 2014, 565 : 94 - 100
  • [47] On the formation of Ti2AlN MAX phase coatings and improvement in tool life by superimposing on tungsten carbide cutting tool for machining Ti-6Al-4V alloys
    Kumar, Aswani S.
    Priyadarshini, B. Geetha
    Jahaziel, Bibeye
    Krishnaraj, V.
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 107 : 210 - 225
  • [48] AES and XPS depth-profiling of annealed AlN/Ti-Al/AlN films for high-temperature applications in SAW metallization
    Oswald, S.
    Lattner, E.
    Seifert, M.
    Menzel, S.
    SURFACE AND INTERFACE ANALYSIS, 2018, 50 (11) : 991 - 995
  • [49] Perturbed angular correlation studies of uniaxial compressive stressed zinc, titanium, rutile, Ti2AlN, and Nb2AlC
    Bruesewitz, C.
    Vetter, U.
    Hofsaess, H.
    Barsoum, M. W.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (29)
  • [50] Effects of substrate pretreatment and annealing processes on AlN thin films prepared by EVPE
    Xie, Luxiao
    Zhang, Hui
    Xie, Xinjian
    Wang, Endong
    Lin, Xiangyu
    Song, Yuxuan
    Liu, Guodong
    Chen, Guifeng
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2022, 150