A note on discontinuous galerkin divergence-free solutions of the navier-stokes equations

被引:214
作者
Cockburn, Bernardo
Kanschat, Guido
Schotzau, Dominik
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Heidelberg, Inst Angew Math, D-69120 Heidelberg, Germany
[3] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; divergence-free condition; discontinuous Galerkin methods;
D O I
10.1007/s10915-006-9107-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a class of discontinuous Galerkin methods for the incompressible Navier-Stokes equations yielding exactly divergence-free solutions. Exact incompressibility is achieved by using divergence-conforming velocity spaces for the approximation of the velocities. The resulting methods are locally conservative, energy-stable, and optimally convergent. We present a set of numerical tests that confirm these properties. The results of this note naturally expand the work in Cockburn et al. (2005) Math. Comp. 74, 1067-1095.
引用
收藏
页码:61 / 73
页数:13
相关论文
共 19 条
[1]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[2]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[3]  
BAKER GA, 1977, MATH COMPUT, V31, P45, DOI 10.1090/S0025-5718-1977-0431742-5
[4]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[5]  
BASSI F, 1997, 2 EUR C TURB FLUID D, P99
[6]   Superconvergence and H(div) projection for discontinuous Galerkin methods [J].
Bastian, P ;
Rivière, B .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2003, 42 (10) :1043-1057
[7]  
Brezzi F., 1999, Atti Convegno in onore di F. Brioschi (Milano 1997), Istituto Lombardo, P197
[8]  
Carrero J, 2006, MATH COMPUT, V75, P533, DOI 10.1090/S0025-5718-05-01804-1
[9]   An a priori error analysis of the local discontinuous Galerkin method for elliptic problems [J].
Castillo, P ;
Cockburn, B ;
Perugia, I ;
Shötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) :1676-1706
[10]   The local discontinuous Galerkin method for linearized incompressible fluid flow:: a review [J].
Cockburn, B ;
Kanschat, G ;
Schötzau, D .
COMPUTERS & FLUIDS, 2005, 34 (4-5) :491-506