Coalescence of Water Drops at an Oil-Water Interface Loaded with Microparticles and Surfactants

被引:11
|
作者
Calvo, Esteban [1 ,2 ]
de Malmazet, Erik [3 ,6 ]
Risso, Frederic [3 ,4 ]
Masbernat, Olivier [4 ,5 ]
机构
[1] Univ Zaragoza, Escuela Ingn & Arquitectura, Area Mecan Fluidos, Maria Luna 3, Zaragoza 50018, Spain
[2] Univ Zaragoza, CSIC, Lab Invest Fluidodinam & Tecnol Combust LIFTEC, Maria Luna 10, Zaragoza 50018, Spain
[3] Univ Toulouse, CNRS, IMFT, 2 Allee Prof Camille Soula, F-31400 Toulouse, France
[4] Univ Toulouse, FR FERMaT, CNRS, INPT,INSA,UPS,Lab Genie Chim, 118 Route Narbonne, F-31062 Toulouse, France
[5] Univ Toulouse, CNRS, LGC, 4 Allee Emile Monso CS 84234, F-31432 Toulouse 4, France
[6] Elect France R&D, Dept Mecan Fluides Energie & Environm MFEE, F-78401 Chatou, France
关键词
LIQUID-LIQUID INTERFACE; FOAM STABILITY; FILM DRAINAGE; HYDRODYNAMIC MECHANISM; AQUEOUS-SOLUTION; ADSORPTION; MIXTURES; VELOCITY; ENERGY; SHAPE;
D O I
10.1021/acs.iecr.9b02524
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This work investigates the coalescence of water droplets settled on a water-oil interface in the presence of microparticles and surfactant. The successive stages of the coalescence process, including interstitial film formation, drainage, rupture, and retraction, are analyzed in detail. This leads us to distinguish between contrasted situations depending on the nature of the surfactant and its affinity with the microparticles. Hydrophilic particles have been previously shown to promote coalescence by means of a bridging mechanism. In that case, coalescence is a deterministic process that lasts the time required for the drainage to make the film thickness equal to the size of the particles. However, the present study shows how surfactants can totally change the effect of the particles upon coalescence. When surfactant both stabilizes the water-oil interface and adsorbs onto the particles, the bridging mechanism is inhibited and the coalescence becomes a random process. Since molecular forces between facing film interfaces are not attractive, thermal fluctuations are required to initiate the formation of a hole in the adsorbed surfactant layer. Provided the surfactant concentration in the bulk is large enough to ensure that the interfaces are close to saturation, the coalescence is delayed by a stochastic time interval and the drop coalescence becomes a Poisson process. These results shed a new light on the mechanisms of droplet coalescence in complex industrial applications where surfactant and particles are present, either purposely added or present as uncontrolled contaminants.
引用
收藏
页码:15573 / 15587
页数:15
相关论文
共 50 条
  • [31] Janus particles at an oil-water interface
    Park, Bum Jun
    Brugarolas, Teresa
    Lee, Daeyeon
    SOFT MATTER, 2011, 7 (14) : 6413 - 6417
  • [32] Phospholipid Diffusion at the Oil-Water Interface
    Walder, Robert B.
    Honciuc, Andrei
    Schwartz, Daniel K.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (35): : 11484 - 11488
  • [33] ON THE OSCILLATORY PHENOMENON IN AN OIL-WATER INTERFACE
    TOKO, K
    YOSHIKAWA, K
    TSUKIJI, M
    NOSAKA, M
    YAMAFUJI, K
    BIOPHYSICAL CHEMISTRY, 1985, 22 (03) : 151 - 158
  • [34] NEUTRON REFLECTIVITY OF AN OIL-WATER INTERFACE
    LEE, LT
    LANGEVIN, D
    FARNOUX, B
    PHYSICAL REVIEW LETTERS, 1991, 67 (19) : 2678 - 2681
  • [35] Measurement and calculation on oil-water interface
    Ren X.
    He L.
    Song A.
    Zhao X.
    Yao B.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2019, 40 (09): : 95 - 115
  • [36] POLYIONS TRAPPED AT AN OIL-WATER INTERFACE
    PINCUS, P
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1978, 63 (03) : 561 - 566
  • [37] Hydrodynamics of Particles at an Oil-Water Interface
    Dani, Archit
    Keiser, Geoff
    Yeganeh, Mohsen
    Maldarelli, Charles
    LANGMUIR, 2015, 31 (49) : 13290 - 13302
  • [38] MONOLAYERS OF DIPALMITOYLPHOSPHATIDYLCHOLINE AT THE OIL-WATER INTERFACE
    THOMA, M
    MOHWALD, H
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1995, 95 (2-3) : 193 - 200
  • [39] Nanoscale Structure of the Oil-Water Interface
    Fukuto, M.
    Ocko, B. M.
    Bonthuis, D. J.
    Netz, R. R.
    Steinruck, H. -G.
    Pontoni, D.
    Kuzmenko, I.
    Haddad, J.
    Deutsch, M.
    PHYSICAL REVIEW LETTERS, 2016, 117 (25)
  • [40] Surfactant mixtures at the oil-water interface
    Campana, Mario
    Webster, John R. P.
    Gutberlet, Thomas
    Wojciechowski, Kamil
    Zarbakhsh, Ali
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2013, 398 : 126 - 133