Deep Learning Analysis Using 18F-FDG PET/CT to Predict Occult Lymph Node Metastasis in Patients With Clinical N0 Lung Adenocarcinoma

被引:8
作者
Ouyang, Ming-li [1 ]
Zheng, Rui-xuan [1 ]
Wang, Yi-ran [2 ]
Zuo, Zi-yi [1 ]
Gu, Liu-dan [1 ]
Tian, Yu-qian [1 ]
Wei, Yu-guo [3 ]
Huang, Xiao-ying [1 ]
Tang, Kun [4 ]
Wang, Liang-xing [1 ]
机构
[1] Wenzhou Med Univ, Div Pulm Med, Key Lab Heart & Lung, Affiliated Hosp 1, Wenzhou, Peoples R China
[2] Wenzhou Med Univ, Dept Med Engn, Affiliated Hosp 1, Wenzhou, Peoples R China
[3] Gen Elect GE Healthcare, Precis Hlth Inst, Hangzhou, Peoples R China
[4] Wenzhou Med Univ, Dept Nucl Med, Affiliated Hosp 1, Wenzhou, Peoples R China
来源
FRONTIERS IN ONCOLOGY | 2022年 / 12卷
关键词
positron emission tomography; computed tomography (PET; CT); convolutional neural network; lung adenocarcinoma; sublobar resection; lymph node status; SUBLOBAR RESECTION; WEDGE RESECTION; CANCER; OUTCOMES;
D O I
10.3389/fonc.2022.915871
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
IntroductionThe aim of this work was to determine the feasibility of using a deep learning approach to predict occult lymph node metastasis (OLM) based on preoperative FDG-PET/CT images in patients with clinical node-negative (cN0) lung adenocarcinoma. Materials and MethodsDataset 1 (for training and internal validation) included 376 consecutive patients with cN0 lung adenocarcinoma from our hospital between May 2012 and May 2021. Dataset 2 (for prospective test) used 58 consecutive patients with cN0 lung adenocarcinoma from June 2021 to February 2022 at the same center. Three deep learning models: PET alone, CT alone, and combined model, were developed for the prediction of OLM. The performance of the models was evaluated on internal validation and prospective test in terms of accuracy, sensitivity, specificity, and areas under the receiver operating characteristic curve (AUCs). ResultsThe combined model incorporating PET and CT showed the best performance, achieved an AUC of 0.81 [95% confidence interval (CI): 0.61, 1.00] in the prediction of OLM in internal validation set (n = 60) and an AUC of 0.87 (95% CI: 0.75, 0.99) in the prospective test set (n = 58). The model achieved 87.50% sensitivity, 80.00% specificity, and 81.00% accuracy in the internal validation set and achieved 75.00% sensitivity, 88.46% specificity, and 86.60% accuracy in the prospective test set. ConclusionThis study presented a deep learning approach to enable the prediction of occult nodal involvement based on the PET/CT images before surgery in cN0 lung adenocarcinoma, which would help clinicians select patients who would be suitable for sublobar resection.
引用
收藏
页数:9
相关论文
共 37 条
  • [1] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] Sublobar resection is equivalent to lobectomy for clinical stage 1A lung cancer in solid nodules
    Altorki, Nasser K.
    Yip, Rowena
    Hanaoka, Takaomi
    Bauer, Thomas
    Aye, Ralph
    Kohman, Leslie
    Sheppard, Barry
    Thurer, Richard
    Andaz, Shahriyour
    Smith, Michael
    Mayfield, William
    Grannis, Fred
    Korst, Robert
    Pass, Harvey
    Straznicka, Michaela
    Flores, Raja
    Henschke, Claudia I.
    [J]. JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2014, 147 (02) : 754 - 762
  • [3] Survival Rates After Lobectomy, Segmentectomy, and Wedge Resection for Non-Small Cell Lung Cancer
    Cao, Jinlin
    Yuan, Ping
    Wang, Yiqing
    Xu, Jinming
    Yuan, Xiaoshuai
    Wang, Zhitian
    Lv, Wang
    Hu, Jian
    [J]. ANNALS OF THORACIC SURGERY, 2018, 105 (05) : 1483 - 1491
  • [4] Non-small-cell lung cancers: a heterogeneous set of diseases
    Chen, Zhao
    Fillmore, Christine M.
    Hammerman, Peter S.
    Kim, Carla F.
    Wong, Kwok-Kin
    [J]. NATURE REVIEWS CANCER, 2014, 14 (08) : 535 - 546
  • [5] Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1136/bmj.g7594, 10.1016/j.jclinepi.2014.11.010, 10.1038/bjc.2014.639, 10.1002/bjs.9736, 10.1016/j.eururo.2014.11.025, 10.1186/s12916-014-0241-z, 10.7326/M14-0698]
  • [6] Classification of negative and positive18F-florbetapir brain PET studies in subjective cognitive decline patients using a convolutional neural network
    de Vries, Bart Marius
    Golla, Sandeep S. V.
    Ebenau, Jarith
    Verfaillie, Sander C. J.
    Timmers, Tessa
    Heeman, Fiona
    Cysouw, Matthijs C. F.
    van Berckel, Bart N. M.
    van der Flier, Wiesje M.
    Yaqub, Maqsood
    Boellaard, Ronald
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (03) : 721 - 728
  • [7] A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain
    Ding, Yuming
    Sohn, Jae Ho
    Kawczynski, Michael G.
    Trivedi, Hari
    Harnish, Roy
    Jenkins, Nathaniel W.
    Lituiev, Dmytro
    Copeland, Timothy P.
    Aboian, Mariam S.
    Aparici, Carina Mari
    Behr, Spencer C.
    Flavell, Robert R.
    Huang, Shih-Ying
    Zalocusky, Kelly A.
    Nardo, Lorenzo
    Seo, Youngho
    Hawkins, Randall A.
    Pampaloni, Miguel Hernandez
    Hadley, Dexter
    Franc, Benjamin L.
    [J]. RADIOLOGY, 2019, 290 (02) : 456 - 464
  • [8] Non-Small Cell Lung Cancer, Version 1.2020 Featured Updates to the NCCN Guidelines
    Ettinger, David S.
    Wood, Douglas E.
    Aggarwal, Charu
    Aisner, Dara L.
    Akerley, Wallace
    Bauman, Jessica R.
    Bharat, Ankit
    Bruno, Debora S.
    Chang, Joe Y.
    Chirieac, Lucian R.
    D'Amico, Thomas A.
    Dilling, Thomas J.
    Dobelbower, Michael
    Gettinger, Scott
    Govindan, Ramaswamy
    Gubens, Matthew A.
    Hennon, Mark
    Horn, Leora
    Lackner, Rudy P.
    Lanuti, Michael
    Leal, Ticiana A.
    Lin, Jules
    Loo, Billy W., Jr.
    Martins, Renato G.
    Otterson, Gregory A.
    Patel, Sandip P.
    Reckamp, Karen L.
    Riely, Gregory J.
    Schild, Steven E.
    Shapiro, Theresa A.
    Stevenson, James
    Swanson, Scott J.
    Tauer, Kurt W.
    Yang, Stephen C.
    Gregory, Kristina
    Hughes, Miranda
    [J]. JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2019, 17 (12): : 1464 - 1472
  • [9] Evaluating deep learning architectures for Speech Emotion Recognition
    Fayek, Haytham M.
    Lech, Margaret
    Cavedon, Lawrence
    [J]. NEURAL NETWORKS, 2017, 92 : 60 - 68
  • [10] Radiomics: Images Are More than Pictures, They Are Data
    Gillies, Robert J.
    Kinahan, Paul E.
    Hricak, Hedvig
    [J]. RADIOLOGY, 2016, 278 (02) : 563 - 577