Constructing longitudinal disease progression curves using sparse, short-term individual data with an application to Alzheimer's disease

被引:22
作者
Budgeon, C. A. [1 ,2 ]
Murray, K. [3 ]
Turlach, B. A. [1 ]
Baker, S. [4 ]
Villemagne, V. L. [5 ,6 ,7 ]
Burnham, S. C. [2 ]
机构
[1] Univ Western Australia, Ctr Appl Stat, Crawley, WA, Australia
[2] CSIRO, eHlth Hlth & Biosecur, Floreat, WA, Australia
[3] Univ Western Australia, Sch Populat & Global Hlth, Crawley, WA, Australia
[4] Janssen Res & Dev, Titusville, NJ USA
[5] Austin Hlth, Dept Nucl Med, Heidelberg, Vic, Australia
[6] Austin Hlth, Ctr PET, Heidelberg, Vic, Australia
[7] Univ Melbourne, Florey Inst Neurosci & Mental Hlth, Melbourne, Vic, Australia
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Alzheimer's disease; sigmoidal curves; longitudinal trajectories; AMYLOID-BETA DEPOSITION; HYPOTHETICAL MODEL; BIOMARKERS; BOOTSTRAP; ATROPHY;
D O I
10.1002/sim.7300
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In epidemiology, cohort studies utilised to monitor and assess disease status and progression often result in short-term and sparse follow-up data. Thus, gaining an understanding of the full-term disease pathogenesis can be difficult, requiring shorter-term data from many individuals to be collated. We investigate and evaluate methods to construct and quantify the underlying long-term longitudinal trajectories for disease markers using short-term follow-up data, specifically applied to Alzheimer's disease. We generate individuals' follow-up data to investigate approaches to this problem adopting a four-step modelling approach that (i) determines individual slopes and anchor points for their short-term trajectory, (ii) fits polynomials to these slopes and anchor points, (iii) integrates the reciprocated polynomials and (iv) inverts the resulting curve providing an estimate of the underlying longitudinal trajectory. To alleviate the potential problem of roots of polynomials falling into the region over which we integrate, we propose the use of non-negative polynomials in Step 2. We demonstrate that our approach can construct underlying sigmoidal trajectories from individuals' sparse, short-term follow-up data. Furthermore, to determine an optimal methodology, we consider variations to our modelling approach including contrasting linear mixed effects regression to linear regression in Step 1 and investigating different orders of polynomials in Step 2. Cubic order polynomials provided more accurate results, and there were negligible differences between regression methodologies. We use bootstrap confidence intervals to quantify the variability in our estimates of the underlying longitudinal trajectory and apply these methods to data from the Alzheimer's Disease Neuroimaging Initiative to demonstrate their practical use. Copyright (C) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:2720 / 2734
页数:15
相关论文
共 35 条
[1]   Clinical core of the Alzheimer's disease neuroimaging initiative: Progress and plans [J].
Aisen, Paul S. ;
Petersen, Ronald C. ;
Donohue, Michael C. ;
Gamst, Anthony ;
Raman, Rema ;
Thomas, Ronald G. ;
Walter, Sarah ;
Trojanowski, John Q. ;
Shaw, Leslie M. ;
Beckett, Laurel A. ;
Jack, Clifford R., Jr. ;
Jagust, William ;
Toga, Arthur W. ;
Saykin, Andrew J. ;
Morris, John C. ;
Green, Robert C. ;
Weiner, Michael W. .
ALZHEIMERS & DEMENTIA, 2010, 6 (03) :239-246
[2]  
Ali G-C, 2015, World Alzheimer Report 2015-The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends
[3]  
[Anonymous], 2011, Florbetapir Processing Methods
[4]  
[Anonymous], 2005, NEURODEGENERATIVE DI
[5]   Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease [J].
Bateman, Randall J. ;
Xiong, Chengjie ;
Benzinger, Tammie L. S. ;
Fagan, Anne M. ;
Goate, Alison ;
Fox, Nick C. ;
Marcus, Daniel S. ;
Cairns, Nigel J. ;
Xie, Xianyun ;
Blazey, Tyler M. ;
Holtzman, David M. ;
Santacruz, Anna ;
Buckles, Virginia ;
Oliver, Angela ;
Moulder, Krista ;
Aisen, Paul S. ;
Ghetti, Bernardino ;
Klunk, William E. ;
McDade, Eric ;
Martins, Ralph N. ;
Masters, Colin L. ;
Mayeux, Richard ;
Ringman, John M. ;
Rossor, Martin N. ;
Schofield, Peter R. ;
Sperling, Reisa A. ;
Salloway, Stephen ;
Morris, John C. .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 367 (09) :795-804
[6]   ON NONNEGATIVE POLYNOMIALS [J].
BRICKMAN, L .
AMERICAN MATHEMATICAL MONTHLY, 1962, 69 (03) :218-&
[7]  
CAPUANO A.W., 2016, Statistical Methods in Medical Research
[8]   The dynamics of Alzheimer's disease biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort [J].
Caroli, A. ;
Frisoni, G. B. .
NEUROBIOLOGY OF AGING, 2010, 31 (08) :1263-1274
[9]   A Random Effect Block Bootstrap for Clustered Data [J].
Chambers, Raymond ;
Chandra, Hukum .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (02) :452-470
[10]   Research criteria for the diagnosis of Alzheimer"s disease: revising the NINCDS-ADRDA criteria [J].
Dubois, Bruno ;
Feldman, Howard H. ;
Jacova, Claudia ;
Dekosky, Steven T. ;
Barberger-Gateau, Pascale ;
Cummings, Jeffrey ;
Delocourte, Andre ;
Galasko, Douglas ;
Gauthier, Serge ;
Jicha, Gregory ;
Meguro, Kenichi ;
O'Brien, John ;
Pasquier, Florence ;
Robert, Philippe ;
Rossor, Martin ;
Solloway, Steven ;
Stern, Yaakov ;
Visser, Pieter J. ;
Scheltens, Philip .
LANCET NEUROLOGY, 2007, 6 (08) :734-746