On Meyer's funedon of hyperelliptic mapping class groups

被引:21
作者
Morifuji, T [1 ]
机构
[1] Tokyo Univ Agr & Technol, Dept Math, Koganei, Tokyo 1848588, Japan
关键词
mapping class group; signature cocycle; n-invariant; Casson invariant;
D O I
10.2969/jmsj/1196890845
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper. we consider Meyer's function of hyperelliptic mapping class groups of orientable closed surfaces and give certain explicit formulae for it. Moreover we study geometric aspects of Meyer's function, and relate it to the eta-invariant of the signature operator and Morita's homomorphism, which is the core of the Casson invariant of integral homology 3-spheres.
引用
收藏
页码:117 / 129
页数:13
相关论文
共 22 条
[1]  
AKBULUT S, 1990, EXPOSITION MATH NOTE, V36
[2]   THE LOGARITHM OF THE DEDEKIND ETA-FUNCTION [J].
ATIYAH, M .
MATHEMATISCHE ANNALEN, 1987, 278 (1-4) :335-380
[3]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .1. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (JAN) :43-69
[4]   EULER AND MASLOV COCYCLES [J].
BARGE, J ;
GHYS, E .
MATHEMATISCHE ANNALEN, 1992, 294 (02) :235-265
[5]  
Birman JS., 1971, Ann. Math. Stud., V66, P81
[7]   AN ABELIAN QUOTIENT OF THE MAPPING CLASS GROUP IG [J].
JOHNSON, D .
MATHEMATISCHE ANNALEN, 1980, 249 (03) :225-242
[8]   Homology of hyperelliptic mapping class groups for surfaces [J].
Kawazumi, N .
TOPOLOGY AND ITS APPLICATIONS, 1997, 76 (03) :203-216
[9]   DEDEKIND SUMS, MU-INVARIANTS AND THE SIGNATURE COCYCLE [J].
KIRBY, R ;
MELVIN, P .
MATHEMATISCHE ANNALEN, 1994, 299 (02) :231-267
[10]  
LION G, 1980, PROGR MATH, V6