Non-vanishing of Maass form symmetric square L-functions

被引:2
作者
Balkanova, Olga [1 ]
Frolenkov, Dmitry [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, 8 Gubkina St, Moscow 119991, Russia
关键词
L-functions; Non-vanishing; Gauss hypergeometric function; MOMENT;
D O I
10.1016/j.jmaa.2021.125148
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove asymptotic formulas for the twisted first and second moments of Maass form symmetric square L-functions at the central point. As an application, we establish effective lower bounds on the proportion of non-zero central L-values in short intervals. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:23
相关论文
共 22 条
[1]  
[Anonymous], 2010, NIST handbook of mathematical functions. Ed. by
[2]   NON-VANISHING OF MAASS FORM L-FUNCTIONS AT THE CENTRAL POINT [J].
Balkanova, Olga ;
Huang, Bingrong ;
Sodergren, Anders .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (02) :509-523
[3]   The first moment of Maass form symmetric squareL-functions [J].
Balkanova, Olga .
RAMANUJAN JOURNAL, 2021, 55 (02) :761-781
[4]   Convolution formula for the sums of generalized Dirichlet L-functions [J].
Balkanova, Olga ;
Frolenkov, Dmitry .
REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (07) :1973-1995
[5]  
Bateman H., 1953, HIGHER TRANSCENDENTA, VI-III
[6]   Decoupling for Perturbed Cones and the Mean Square of |ζ(1/2+it)| [J].
Bourgain, Jean ;
Watt, Nigel .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (17) :5219-5296
[7]   A mean value of a triple product of L-functions [J].
Buttcane, Jack ;
Khan, Rizwanur .
MATHEMATISCHE ZEITSCHRIFT, 2017, 285 (1-2) :565-591
[8]   The cubic moment of central values of automorphic L-functions [J].
Conrey, JB ;
Iwaniec, H .
ANNALS OF MATHEMATICS, 2000, 151 (03) :1175-1216
[9]  
Gradshteyn I.S., 2014, MATH COMPUT
[10]  
Ivic A., 2003, FUNCT APPROX COMMENT, V31, P93