Abelian Groups with Annihilator Ideals of Endomorphism Rings

被引:1
作者
Chekhlov, A. R. [1 ]
机构
[1] Tomsk State Univ, Tomsk, Russia
关键词
nilpotent endomorphism; annihilator; principal ideal; self-injective endomorphism ring; almost injective group; INJECTIVE-MODULES;
D O I
10.1134/S0037446618020192
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the periodic groups whose endomorphism rings satisfy the annihilator condition for the principal left ideals generated by nilpotent elements. We prove that torsion-free reduced separable, vector, and algebraically compact groups have endomorphism rings with the annihilator condition for the principal left (right) ideals generated by nilpotent elements if and only if these rings are commutative. We show that the almost injective groups (in the sense of Harada) are injective, i.e. divisible.
引用
收藏
页码:363 / 367
页数:5
相关论文
共 14 条
[1]  
Abyzov AN, 2018, MATH NOTES+, V103, P3, DOI [10.4213/mzm11363, 10.1134/S0001434618010017]
[2]   Characterizations of Almost Injective Modules [J].
Alahmadi, Adel ;
Jain, S. K. ;
Singh, Surjeet .
NONCOMMUTATIVE RINGS AND THEIR APPLICATIONS, 2015, 634 :11-17
[3]  
ALBRECHT U, 1987, COMMUN ALGEBRA, V15, P2451
[4]  
[Anonymous], 1973, Algebra: Rings, modules, and categories
[5]  
Brown C, 1976, HIST CRITICISM FAITH
[6]   Commutator Invariant Subgroups of Abelian Groups [J].
Chekhlov, A. R. .
SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (05) :926-934
[7]  
Fuchs L, 1979, INFINITE ABELIAN GRO
[8]  
Fuchs L., 1973, PURE APPL MATH, V36
[9]  
HARADA M, 1991, OSAKA J MATH, V28, P751
[10]  
Ivanov A.V., 1982, ABELIAN GROUPS MODUL, P93