Infinitely many sign-changing solutions for p-Laplacian Neumann problems with indefinite weight

被引:8
作者
He, Tieshan [1 ]
Chen, Chuanyong [1 ]
Huang, Yehui [1 ]
Hou, Chaojun [1 ]
机构
[1] Zhongkai Univ Agr & Engn, Coll Computat Sci, Guangzhou 510225, Guangdong, Peoples R China
关键词
p-Laplacian; Sign-changing solution; Critical point theory; Indefinite potential; Truncation; ELLIPTIC-EQUATIONS; MULTIPLICITY; EXISTENCE; THEOREM;
D O I
10.1016/j.aml.2014.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider nonlinear Neumann problems driven by p-Laplacian plus an indefinite potential. Using critical point theory, coupled with suitable truncation techniques, we show that the problem has infinitely many sign-changing solutions. The interesting point is that we do not impose any restrictions to the behavior of the reaction term f at infinity. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:73 / 79
页数:7
相关论文
共 23 条
[1]   Existence of multiple solutions with precise sign information for superlinear Neumann problems [J].
Aizicovici, Sergiu ;
Papageorgiou, Nikolaos S. ;
Staicu, Vasile .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (04) :679-715
[2]   Existence of infinitely many weak solutions for a Neumann problem [J].
Anello, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 57 (02) :199-209
[3]   Existence and multiplicity results to Neumann problems for elliptic equations involving the p-Laplacian [J].
Bonanno, Gabriele ;
Sciammetta, Angela .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 390 (01) :59-67
[4]   Multiplicity results for a Neumann problem involving the p-Laplacian [J].
Faraci, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (01) :180-189
[5]  
Gasinski L., 2006, Ser. Math. Anal. Appl., V9
[6]   MULTIPLE SOLUTIONS FOR A CLASS OF NONLINEAR NEUMANN EIGENVALUE PROBLEMS [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (04) :1491-1512
[7]   Existence and uniqueness of positive solutions for the Neumann p-Laplacian [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
POSITIVITY, 2013, 17 (02) :309-332
[8]   A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations [J].
Kajikiya, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 225 (02) :352-370
[9]   BOUNDARY-REGULARITY FOR SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
LIEBERMAN, GM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (11) :1203-1219
[10]   Multiple existence results of solutions for the Neumann problems via super- and sub-solutions [J].
Miyajima, Shizuo ;
Motreanu, Dumitru ;
Tanaka, Mieko .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (04) :1921-1953