The Helgason Fourier transform for homogeneous vector bundles over compact Riemannian symmetric spaces - the local theory

被引:9
作者
Camporesi, R [1 ]
机构
[1] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
symmetric spaces; homogeneous vector bundles; harmonic analysis; Fourier transform; representation theory;
D O I
10.1016/j.jfa.2004.08.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Helgason Fourier transform on noncompact Riemannian symmetric spaces G/K is generalized to the homogeneous vector bundles over the compact dual spaces U/K. The scalar theory on U/K was considered by Sherman (the local theory for U/K of arbitrary rank, and the global theory for U/K of rank one). In this paper we extend the local theory of Sherman to arbitrary homogeneous vector bundles on U/K. For U/K of rank one we also obtain a generalization of the Cartan-Helgason theorem valid for any K-type. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:97 / 117
页数:21
相关论文
共 7 条
[1]   The Helgason Fourier transform for homogeneous vector bundles over Riemannian symmetric spaces [J].
Camporesi, R .
PACIFIC JOURNAL OF MATHEMATICS, 1997, 179 (02) :263-300
[2]  
CAMPORESI R, IN PRESS PACIFIC J M
[3]  
Helgason S., 1984, GROUPS GEOMETRIC ANA
[4]  
Helgason S., 2008, Mathematical Surveys and Monographs, V39
[5]  
Knapp A. W., 2001, Representation theory of semisimple groups: an overview based on examples
[6]  
Kostant B., 2004, PROGR MATH, V220, P291
[7]   THE HELGASON FOURIER-TRANSFORM FOR COMPACT RIEMANNIAN SYMMETRIC-SPACES OF RANK ONE [J].
SHERMAN, TO .
ACTA MATHEMATICA, 1990, 164 (1-2) :73-144