The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition

被引:129
作者
Li, Gongbao [1 ]
Yang, Caiyun [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
关键词
p-Laplacian equation; Subcritical; Without the (AR) condition; Nontrivial solutions; INFINITY; PERTURBATIONS;
D O I
10.1016/j.na.2010.02.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of a nontrivial solution to the following nonlinear elliptic boundary value problem of p-Laplacian type: {-Delta(p)u = lambda f(x, u), x is an element of Omega, u = 0, x is an element of partial derivative Omega ((P)(lambda) where p > 1, lambda is an element of R(1), Omega subset of R(N) is a bounded domain and Delta(p)u = div(vertical bar del u vertical bar(p) 2 del u) is the p-Laplacian of u.f is an element of C(0) ((Omega) over bar x R(1), R(1)) is p-superlinear at t = 0 and subcritical at t = infinity. We prove that under suitable conditions for all lambda > 0, the problem ((P)(lambda)) has at least one nontrivial solution without assuming the Ambrosetti-Rabinowitz condition. Our main result extends a result for ((P)(lambda)) for when p = 2 given by Miyagaki and Souto (2008) in [8] to the general problem ((P)(lambda)) where p > 1. Meanwhile, our result is stronger than a similar result of Li and Zhou (2003) given in [15]. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4602 / 4613
页数:12
相关论文
共 22 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 1970, PROCSYMPPURMATH
[3]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[4]  
Brezis H., 2003, MORSE THEORY MINIMAX, P77
[5]  
CASRO A, 1979, ANN MAT PUR APPL, V120, P114
[6]  
Cerami G., 1978, Ren. Acad. Sci. Lett. Ist. Lomb, V112, P332
[7]   Some existence results of solutions for p-Laplacian [J].
Chen, ZH ;
Shen, YT ;
Yao, YX .
ACTA MATHEMATICA SCIENTIA, 2003, 23 (04) :487-496
[8]   EXISTENCE RESULTS FOR PERTURBATIONS OF THE P-LAPLACIAN [J].
COSTA, DG ;
MAGALHAES, CA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (03) :409-418
[9]   NONTRIVIAL SOLUTIONS FOR PERTURBATIONS OF THE P-LAPLACIAN ON UNBOUNDED-DOMAINS [J].
COSTA, DG ;
MIYAGAKI, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 193 (03) :737-755
[10]   On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN [J].
Jeanjean, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :787-809