Numerical Optimal Control Strategy for Series Tuned IPT Systems

被引:1
作者
Dong, Weihao [1 ]
Madawala, Udaya [1 ]
Baguley, Craig [2 ]
机构
[1] Univ Auckland, Dept Elect Comp & Software Engn, Auckland, New Zealand
[2] Auckland Univ Technol, Dept Engn Comp & Math Sci, Auckland, New Zealand
来源
2022 IEEE 7TH SOUTHERN POWER ELECTRONICS CONFERENCE, SPEC | 2022年
关键词
IPT systems; Numerical; Optimal control; Series; ZVS; EFFICIENCY TRACKING; POWER;
D O I
10.1109/SPEC55080.2022.10058232
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Compared to traditional strategies using single, two or three control variables, an optimal control strategy using four control variables can achieve optimal performance when mutual inductance (M) and output power (P-out) vary largely. For Series-Series (SS) compensated IPT systems, the optimum values for four control variables can be determined analytically using the optimal conditions, related to load impedance matching, minimizing secondary reactance, and operation of both the primary and secondary side converters with soft switching. Due to its highly non-linear and complex nature, the analytical approach cannot be used for all different types of compensation networks. This paper, therefore, proposes a numerical technique that can be used to determine the optimal conditions and subsequent optimal parameter values for any type of compensation network. Results of a SS compensated IPT system are presented in comparison to the traditional analytical approach to demonstrate the efficacy of the proposed numerical method.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Optimal control strategy to reduce the temporal wavefront error in AO systems [J].
Doelman, NJ ;
Hinnen, KJG ;
Stoffelen, FJG ;
Verhaegen, MH .
ADVANCEMENTS IN ADAPTIVE OPTICS, PTS 1-3, 2004, 5490 :1426-1437
[22]   Numerical Solution to Uncertainties in the Finite Time Optimal Control Systems Design [J].
Rodrigo, Rodolfo H. ;
Patino, Daniel H. .
2015 XVI WORKSHOP ON INFORMATION PROCESSING AND CONTROL (RPIC), 2015,
[23]   Optimal control of bioprocess systems using hybrid numerical optimization algorithms [J].
Wu, Xiang ;
Zhang, Kanjian ;
Cheng, Ming .
OPTIMIZATION, 2018, 67 (08) :1287-1306
[24]   Numerical solution of optimal control problems for loaded lumped parameter systems [J].
Abdullaev V.M. ;
Aida-Zade K.R. .
Computational Mathematics and Mathematical Physics, 2006, 46 (9) :1487-1502
[25]   Hybrid extended Fourier series for optimal control of nonlinear algebraic dynamical systems [J].
Nazarzadeh J. ;
Radmanesh H. .
Journal of Control Theory and Applications, 2011, 9 (04) :487-492
[26]   A Novel Fast-Switching Control for Multiple pickup IPT Systems [J].
Chen, Liang ;
Boys, John T. ;
Covic, Grant A. .
2013 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2013, :2559-2565
[27]   Optimal Control Strategy Design with Minimum Energy Consumption for Connected Vehicle Systems [J].
Wang, Zhuwei ;
Guo, Yuehui ;
Fang, Chao ;
Li, Meng ;
Sun, Yang ;
Zhang, Yanhua .
2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
[28]   A Novel Slow-Switching Control for Multiple pickup IPT Systems [J].
Chen, Liang ;
Boys, John T. ;
Covic, Grant A. .
2013 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2013, :1916-1922
[29]   Optimal Neuro-Control Strategy for Nonlinear Systems With Asymmetric Input Constraints [J].
Xiong Yang ;
Bo Zhao .
IEEE/CAAJournalofAutomaticaSinica, 2020, 7 (02) :575-583
[30]   Dynamic Event-triggered Approximate Optimal Control Strategy for Nonlinear Systems [J].
Cheng, Songsong ;
Zhu, Mingjian ;
Fu, Yuhui ;
Fang, Xiaohan ;
Fan, Yuan .
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (05) :1418-1427