On the multilevel structure of global optimization problems

被引:49
作者
Locatelli, M [1 ]
机构
[1] Univ Turin, Dipartimento Informat, I-10149 Turin, Italy
关键词
global optimization; objective functions; Basin Hopping; multilevel structure; local moves;
D O I
10.1007/s10589-005-4561-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we will discuss the multilevel structure of global optimization problems. Such problems can often be seen at different levels, the number of which varies from problem to problem. At each level different objects are observed, but all levels display a similar structure. The number of levels which can be recognized for a given optimization problem represents a more complete measure of the difficulty of the problem with respect to the standard measure given by the total number of local minima. Moreover, the subdivision in levels will also suggest the introduction of appropriate tools, which will be different for each level but, in accordance with the fact that all levels display a similar structure, will all be based on a common concept namely that of local move. Some computational experiments will reveal the effectiveness of such tools.
引用
收藏
页码:5 / 22
页数:18
相关论文
共 50 条
  • [31] BFGS-GSO for Global Optimization Problems
    Ouyang, Aijia
    Liu, Libin
    Yue, Guangxue
    Zhou, Xu
    Li, Kenli
    JOURNAL OF COMPUTERS, 2014, 9 (04) : 966 - 973
  • [32] Global Optimization of Nonlinear Bilevel Programming Problems
    Zeynep H. Gümüş
    Christodoulos A. Floudas
    Journal of Global Optimization, 2001, 20 : 1 - 31
  • [33] JMetaBFOP: A tool for solving global optimization problems
    Garcia-Lopez, Adrian
    Chavez-Bosquez, Oscar
    Hernandez-Torruco, Jose
    Hernandez-Ocana, Betania
    SOFTWAREX, 2023, 23
  • [34] Solving Global Optimization Problems on GPU Cluster
    Barkalov, Konstantin
    Gergel, Victor
    Lebedev, Ilya
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [35] Global optimization of signomial geometric programming problems
    Xu, Gongxian
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 233 (03) : 500 - 510
  • [36] Hybrid genetic algorithms for global optimization problems
    Asim, M.
    Khan, W.
    Yeniay, O.
    Jan, M. A.
    Tairan, N.
    Hussian, H.
    Wang, Gai-Ge
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (03): : 539 - 551
  • [37] Global solution of optimization problems with signomial parts
    Porn, Ray
    Bjork, Kaj-Mikael
    Westerlund, Tapio
    DISCRETE OPTIMIZATION, 2008, 5 (01) : 108 - 120
  • [38] Lipschitz global optimization methods in control problems
    D. E. Kvasov
    Ya. D. Sergeyev
    Automation and Remote Control, 2013, 74 : 1435 - 1448
  • [39] Global Optimization Techniques for Mixed Complementarity Problems
    Christian Kanzow
    Journal of Global Optimization, 2000, 16 : 1 - 21
  • [40] Global optimization of nonconvex factorable programming problems
    Sherali, HD
    Wang, HJ
    MATHEMATICAL PROGRAMMING, 2001, 89 (03) : 459 - 478