On the intersection of k-Lucas sequences and some binary sequences

被引:5
作者
Rihane, Salah Eddine [1 ]
Togbe, Alain [2 ]
机构
[1] Univ Ctr Mila, Inst Sci & Technol, Dept Math, Mila, Algeria
[2] Purdue Univ Northwest, Dept Math Stat & Comp Sci, 1401 SUS 421, Westerville, IN 46391 USA
关键词
k-generalized Lucas numbers; Linear form in logarithms; Reduction method; PERFECT POWERS; FIBONACCI; SUMS;
D O I
10.1007/s10998-021-00387-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an integer k >= 2, let (L-n((k)))(n) be the k-generalized Lucas sequence which starts with 0, ... , 0, 2,1 (k terms) and each term afterwards is the sum of the k preceding terms. In this paper, we find all k-generalized Lucas numbers which are Fibonacci, Pell or Pell-Lucas numbers, i.e., we study the Diophantine equations L-n((k)) = F-m, L-n((k)) = P-m and L-n((k)) = Q(m) in positive integers n, m, k with k >= 3.
引用
收藏
页码:125 / 145
页数:21
相关论文
共 16 条
[1]  
Alekseyev, 2011, PELL LUCAS NUMBERS I, V11, P239
[2]   EQUATIONS 3X2-2=Y2 AND 8X2-7=Z2 [J].
BAKER, A ;
DAVENPOR.H .
QUARTERLY JOURNAL OF MATHEMATICS, 1969, 20 (78) :129-&
[3]  
Bravo EF, 2014, FIBONACCI QUART, V52, P296
[4]   ON THE INTERSECTION OF k-FIBONACCI AND PELL NUMBERS [J].
Bravo, Jhon J. ;
Gomez, Carlos A. ;
Herrera, Jose L. .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (02) :535-547
[5]   POWERS OF TWO AS SUMS OF TWO k-FIBONACCI NUMBERS [J].
Bravo, Jhon J. ;
Gomez, Carlos A. ;
Luca, Florian .
MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) :85-100
[6]   Powers in products of terms of Pell's and Pell-Lucas sequences [J].
Bravo, Jhon J. ;
Das, Pranabesh ;
Guzman, Sergio ;
Laishram, Shanta .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (04) :1259-1274
[7]   Repdigits in k-Lucas sequences [J].
Bravo, Jhon J. ;
Luca, Florian .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (02) :141-154
[8]  
BRAVO JHON J., 2012, Rev.colomb.mat., V46, P67
[9]   A generalization of a theorem of Baker and Davenport [J].
Dujella, A ;
Petho, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1998, 49 (195) :291-306
[10]   On perfect powers that are sums of two Fibonacci numbers [J].
Luca, Florian ;
Patel, Vandita .
JOURNAL OF NUMBER THEORY, 2018, 189 :90-96