Towards a high efficient Cd-free double CZTS layers kesterite solar cell using an optimized interface band alignment

被引:58
作者
Bencherif, H. [1 ]
机构
[1] Higher Natl Sch Renewable Energies, HNS RE2SD, Environm & Sustainable Dev, Batna, Algeria
关键词
CZTS solar cell; Cd-free materials; Recombination mechanism; Band offset engineering; Optimization; OFFSET; HETEROJUNCTION; RECOMBINATION;
D O I
10.1016/j.solener.2022.04.040
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, we suggest a potential high efficiency Kesterite solar cell with double CZTS layers including efficient band offset alignment. Several loss processes like radiative recombination, existence of defect and traps densities in bulk CZTS and interface CdS/CZTS are considered in the modeling framework. The prediction capability of the adopted modeling framework is assessed with respect to experimental results where a good matching can be distinguished. An optimal solar cell design is investigated by studying the effect of interfacial traps, beside doping and thickness of different device layers. In order to circumvent the CdS/CZTS interface drawback, several window Cd-free materials such as IGZO, TiO2, ZnO, WS2, ZnS are scrutinized. Our findings show that ZnO with high optical and electrical characteristics can significantly boost the solar cell performance. Moreover, in order to tune the band alignment at ZnO/CZTS interface, we explore an appropriate electron affinity of ZnO by varying Mg content where we find that pristine ZnO with (chi = 4.13 eV) establish an optimal band offset with a spike like conformation. The achieved results prove the efficiency of the proposed design in mitigating the unwanted effect of the recombination. By comparing these outcomes with the conventional device efficiency 8.8%, we achieved an enhanced efficiency of 10.68%. The proposed structure may provide advantages such as enhanced absorption behavior and decreased recombination effects.
引用
收藏
页码:114 / 125
页数:12
相关论文
共 38 条
[1]   Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction [J].
Baer, M. ;
Schubert, B. -A. ;
Marsen, B. ;
Wilks, R. G. ;
Pookpanratana, S. ;
Blum, M. ;
Krause, S. ;
Unold, T. ;
Yang, W. ;
Weinhardt, L. ;
Heske, C. ;
Schock, H. -W. .
APPLIED PHYSICS LETTERS, 2011, 99 (22)
[2]   Cd-free buffer layer materials on Cu2ZnSn(SxSe1-x)4: Band alignments with ZnO, ZnS, and In2S3 [J].
Barkhouse, D. Aaron R. ;
Haight, Richard ;
Sakai, Noriyuki ;
Hiroi, Homare ;
Sugimoto, Hiroki ;
Mitzi, David B. .
APPLIED PHYSICS LETTERS, 2012, 100 (19)
[3]   Modeling and optimization of CZTS kesterite solar cells using TiO2 as efficient electron transport layer [J].
Bencherif, H. ;
Dehimi, L. ;
Mahsar, N. ;
Kouriche, E. ;
Pezzimenti, F. .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2022, 276
[4]  
Bencherif H., SMART FLEXIBLE ENERG, P119, DOI [10.1201/9781003186755-7, DOI 10.1201/9781003186755-7]
[5]   Combined optical-electrical modeling of perovskite solar cell with an optimized design [J].
Bendib, T. ;
Bencherif, H. ;
Abdi, M. A. ;
Meddour, F. ;
Dehimi, L. ;
Chahdi, M. .
OPTICAL MATERIALS, 2020, 109
[6]   Advanced electrical simulation of thin film solar cells [J].
Burgelman, Marc ;
Decock, Koen ;
Khelifi, Samira ;
Abass, Aimi .
THIN SOLID FILMS, 2013, 535 :296-301
[7]   Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying [J].
Canulescu, S. ;
Rechendorff, K. ;
Borca, C. N. ;
Jones, N. C. ;
Bordo, K. ;
Schou, J. ;
Nielsen, L. Pleth ;
Hoffmann, S. V. ;
Ambat, R. .
APPLIED PHYSICS LETTERS, 2014, 104 (12)
[8]  
Chaves M, 2019, MATER RES-IBERO-AM J, V22, DOI [10.1590/1980-5373-mr-2018-0665, 10.1590/1980-5373-MR-2018-0665]
[9]   What is the band alignment of Cu2ZnSn(S,Se)4 solar cells? [J].
Crovetto, Andrea ;
Hansen, Ole .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 169 :177-194
[10]   Effect of the conduction band offset on interfacial recombination behavior of the planar perovskite solar cells [J].
Ding, Chao ;
Zhang, Yaohong ;
Liu, Feng ;
Kitabatake, Yukiko ;
Hayase, Shuzi ;
Toyoda, Taro ;
Yoshino, Kenji ;
Minemoto, Takashi ;
Katayama, Kenji ;
Shen, Qing .
NANO ENERGY, 2018, 53 :17-26