Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: Influence of temperature and steam on hydrogen yield and syngas composition

被引:178
作者
Yan, Feng [1 ]
Luo, Si-yi [1 ]
Hu, Zhi-quan [1 ]
Xiao, Bo [1 ]
Cheng, Gong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Environm Sci & Engn, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogen-rich gas; Steam gasification; Biomass char; Biomass micron fuel (BMF);
D O I
10.1016/j.biortech.2010.02.025
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Steam gasification experiments of biomass char were carried out in a fixed-bed reactor. The experiments were completed at bed temperature of 600-850 degrees C, a steam flow rate of 0-0.357 g/min/g of biomass char, and a reaction time of 15 min. The aim of this study is to determine the effects of bed temperature and steam flow rate on syngas yield and its compositions. The results showed that both high gasification temperature and introduction of proper steam led to higher yield of dry gas and higher carbon conversion efficiency. However, excessive steam reduced gas yield and carbon conversion efficiency. The maximum dry gas yield was obtained at the gasification temperature of 850 degrees C and steam flow rate of 0.165 g/min/g biomass char. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5633 / 5637
页数:5
相关论文
共 20 条
[1]   Fixed-bed pyrolysis of safflower seed:: influence of pyrolysis parameters on product yields and compositions [J].
Beis, SH ;
Onay, Ö ;
Koçkar, ÖM .
RENEWABLE ENERGY, 2002, 26 (01) :21-32
[2]   A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion [J].
Bridgwater, AV ;
Toft, AJ ;
Brammer, JG .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2002, 6 (03) :181-248
[3]   Production of hydrogen and/or syngas (H2+CO) via steam gasification of biomass-derived chars [J].
Chaudhari, ST ;
Dalai, AK ;
Bakhshi, NN .
ENERGY & FUELS, 2003, 17 (04) :1062-1067
[4]   Steam gasification of biomass-derived char for the production of carbon monoxide-rich synthesis gas [J].
Chaudhari, ST ;
Bej, SK ;
Bakhshi, NN ;
Dalai, AK .
ENERGY & FUELS, 2001, 15 (03) :736-742
[5]   Pyrolysis of two agricultural residues: Olive and grape bagasse, influence of particle size and temperature. [J].
Encinar, JM ;
Beltran, FJ ;
Bernalte, A ;
Ramiro, A ;
Gonzalez, JF .
BIOMASS & BIOENERGY, 1996, 11 (05) :397-409
[6]   High-pressure gasification reactivity of biomass chars produced at different temperatures [J].
Fermoso, J. ;
Stevanov, C. ;
Moghtaderi, B. ;
Arias, B. ;
Pevida, C. ;
Plaza, M. G. ;
Rubiera, F. ;
Pis, J. J. .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2009, 85 (1-2) :287-293
[7]   Bio-oil upgrading over platinum catalysts using in situ generated hydrogen [J].
Fisk, Courtney A. ;
Morgan, Tonya ;
Ji, Yaying ;
Crocker, Mark ;
Crofcheck, Czarena ;
Lewis, Sam A. .
APPLIED CATALYSIS A-GENERAL, 2009, 358 (02) :150-156
[8]   The study of reactions influencing the biomass steam gasification process [J].
Franco, C ;
Pinto, F ;
Gulyurtlu, I ;
Cabrita, I .
FUEL, 2003, 82 (07) :835-842
[9]   Biomass gasification in atmospheric and bubbling fluidized bed: Effect of the type of gasifying agent on the product distribution [J].
Gil, J ;
Corella, J ;
Aznar, MP ;
Caballero, MA .
BIOMASS & BIOENERGY, 1999, 17 (05) :389-403
[10]   Pyrolysis of various biomass residues and char utilization for the production of activated carbons [J].
Gonzalez, J. F. ;
Roman, S. ;
Encinar, J. M. ;
Martinez, G. .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2009, 85 (1-2) :134-141