Infinite symmetric group, pseudomanifolds, and combinatorial cobordism-like structures

被引:1
作者
Gaifullin, Alexander A. [1 ,2 ,3 ,4 ]
Neretin, Yury A. [3 ,4 ,5 ,6 ]
机构
[1] Steklov Math Inst, Moscow, Russia
[2] Skolkovo Inst Sci & Technol, Moscow, Russia
[3] Moscow MV Lomonosov State Univ, MechMath Dept, Moscow, Russia
[4] Kharkevich Inst Informat Transmiss Problems, Moscow, Russia
[5] Univ Vienna, Math Dept, Vienna, Austria
[6] Inst Theoret & Expt Phys, Moscow, Russia
基金
奥地利科学基金会;
关键词
Representations of categories; infinite symmetric group; double cosets; pseudo-manifold;
D O I
10.1142/S179352531850022X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a category B whose morphisms are n-dimensional pseudomanifolds equipped with certain additional structures (coloring and labeling of some cells), multiplication of morphisms is similar to a concatenation of cobordisms. On the other hand, we consider the product G of (n + 1) copies of infinite symmetric group. We construct a correspondence between the sets of morphisms of B and double coset spaces of G with respect to certain subgroups. We show that unitary representations of G produce functors from the category of B to the category of Hilbert spaces and bounded linear operators.
引用
收藏
页码:605 / 625
页数:21
相关论文
共 20 条
[1]  
[Anonymous], 1996, CATEGORIES SYMMETRIE
[2]  
[Anonymous], 1990, Leningrad Math. J.
[3]  
[Anonymous], 1985, REPRESENTATIONS LIE
[4]   Representations of m-valued groups on triangulations of manifolds [J].
Buchstaber, V. M. ;
Gaifullin, A. A. .
RUSSIAN MATHEMATICAL SURVEYS, 2006, 61 (03) :560-562
[5]  
Dixmier J., 1964, C ALGEBRES LEURS REP
[6]  
Ferri M., 1986, Aequationes Math., V31, P121, DOI 10.1007/BF02188181
[7]   The Manifold of Isospectral Symmetric Tridiagonal Matrices and Realization of Cycles by Aspherical Manifolds [J].
Gaifullin, A. A. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 263 (01) :38-56
[8]  
Gaifullin A.A., 2013, EUR C MATH EUR MATH, P315
[9]   Universal realisators for homology classes [J].
Gaifullin, Alexander .
GEOMETRY & TOPOLOGY, 2013, 17 (03) :1745-1772
[10]  
GORESKY M, 1980, TOPOLOGY, V19, P135, DOI 10.1016/0040-9383(80)90003-8