NUMERICAL SOLUTIONS TO INTEGRAL EQUATIONS EQUIVALENT TO DIFFERENTIAL EQUATIONS WITH FRACTIONAL TIME

被引:13
作者
Bandrowski, Bartosz [1 ]
Karczewska, Anna [1 ]
Rozmej, Piotr [2 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, PL-65516 Zielona Gora, Poland
[2] Univ Zielona Gora, Inst Phys, PL-65516 Zielona Gora, Poland
关键词
fractional equations; Galerkin method; anomalous diffusion; SUPERDIFFUSION;
D O I
10.2478/v10006-010-0019-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an approximate method of solving the fractional (in the time variable) equation which describes the processes lying between heat and wave behavior. The approximation consists in the application of a finite subspace of an infinite basis in the time variable (Galerkin method) and discretization in space variables. In the final step, a large-scale system of linear equations with a non-symmetric matrix is solved with the use of the iterative GMRES method.
引用
收藏
页码:261 / 269
页数:9
相关论文
共 18 条
[1]  
[Anonymous], 1994, TEMPLATES SOLUTION L, DOI DOI 10.1137/1.9781611971538
[2]  
Bazhlekova E., 2001, Ph.D. Thesis
[3]   Numerical treatment of an initial-boundary value problem for fractional partial differential equations [J].
Ciesielski, Mariusz ;
Leszczynski, Jacek .
SIGNAL PROCESSING, 2006, 86 (10) :2619-2631
[4]  
FUJITA Y, 1990, OSAKA J MATH, V27, P309
[5]   Bounded step superdiffusion in an oriented hexagonal phase [J].
Gambin, Y ;
Massiera, G ;
Ramos, L ;
Ligoure, C ;
Urbach, W .
PHYSICAL REVIEW LETTERS, 2005, 94 (11)
[6]   Current and universal scaling in anomalous transport [J].
Goychuk, I ;
Heinsalu, E ;
Patriarca, M ;
Schmid, G ;
Hänggi, P .
PHYSICAL REVIEW E, 2006, 73 (02)
[7]   Controllability and observability of linear discrete-time fractional-order systems [J].
Guermah, Said ;
Djennoune, Said ;
Bettayed, Maamar .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2008, 18 (02) :213-222
[8]   Fractional Fokker-Planck dynamics:: Numerical algorithm and simulations [J].
Heinsalu, E ;
Patriarca, M ;
Goychuk, I ;
Schmid, G ;
Hänggi, P .
PHYSICAL REVIEW E, 2006, 73 (04)
[9]   Fractional Fokker-Planck subdiffusion in alternating force fields [J].
Heinsalu, E. ;
Patriarca, M. ;
Goychuk, I. ;
Haenggi, P. .
PHYSICAL REVIEW E, 2009, 79 (04)
[10]   Fractional positive continuous-time linear systems and their reachability [J].
Kaczorek, Tadeusz .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2008, 18 (02) :223-228