Dynamic behaviour of a high-speed train hydraulic yaw damper

被引:48
作者
Huang, Caihong [1 ]
Zeng, Jing [1 ]
机构
[1] Southwest Jiaotong Univ, State Key Lab Tract Power, Chengdu, Sichuan, Peoples R China
关键词
Railway vehicle; yaw damper; dynamic performance; damper model;
D O I
10.1080/00423114.2018.1439588
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper focuses on revealing the dynamic behaviour of a hydraulic yaw damper under very small excitation conditions. First, the measured yaw damper movement is presented when a train experiences unstable motions. It shows that the yaw damper is characterized by very small harmonic movement between 0.5 and 2 mm. Following this, a simplified physical model of the yaw damper is developed which has the ability to reproduce its dynamic performance in the range of operating conditions, and then suitably validated with experimental results. At last, the dynamic behaviour of the yaw damper under very small amplitudes is investigated by comparing with its static behaviour, and the dynamic stiffness and damping in terms of key parameters are studied. It is concluded that there is a great difference in the damper performance between dynamic and static conditions which is caused by the internal damper flexibility under small amplitudes. The percentage of entrapped air in oil, rubber attachment stiffness, and leakage flow have a great effect on the dynamic behaviour of the yaw damper related to the dynamic stiffness and damping. The effect is even more remarkable for smaller amplitudes regarding the dissolved air in oil. Oil leakage has a greater impact on dynamic damping than dynamic stiffness. The series stiffness of the yaw damper is mainly provided by the spring effect of the oil when the rubber attachment stiffness reached a certain limit, and an additional increase in rubber attachment stiffness becomes useless to further enhance the overall stiffness of the damper.
引用
收藏
页码:1922 / 1944
页数:23
相关论文
共 13 条
[1]   Yaw damper modelling and its influence on railway dynamic stability [J].
Alonso, A. ;
Gimenez, J. G. ;
Gomez, E. .
VEHICLE SYSTEM DYNAMICS, 2011, 49 (09) :1367-1387
[2]   Damper Modelling and Its Implementation in Railway Simulation Program [J].
Alonso, Asier ;
Gimenez, J. G. .
NON-SMOOTH PROBLEMS IN VEHICLE SYSTEMS DYNAMICS, 2010, :123-+
[3]  
[Anonymous], 2004, EN13802
[4]  
Bruni S., 2008, WCRR 08 INT C SEOUL
[5]   Carbody hunting investigation of a high speed passenger car [J].
Huang, Caihong ;
Zeng, Jing ;
Liang, Shulin .
JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2013, 27 (08) :2283-2292
[6]  
Huang CH, 2013, 8 CHIN INT TRANSP AN
[7]  
[焦少阳 JIAO Shao-yang], 2009, [材料工程, Journal of Materials Engineering], P10
[8]  
Merritt H.E., 1991, Hydraulic Control Systems
[9]   Comparison of Methods Analyzing Bifurcation and Hunting of Complex Rail Vehicle Models [J].
Polach, Oldrich ;
Kaiser, Ingo .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2012, 7 (04)
[10]   A new shock absorber model for use in vehicle dynamics studies [J].
van Kasteel, R ;
Wang, CG ;
Qian, LX ;
Liu, JZ ;
Ye, GH .
VEHICLE SYSTEM DYNAMICS, 2005, 43 (09) :613-631