A non-invasive optical method for mapping temperature polarization in direct contact membrane distillation

被引:41
|
作者
Santoro, S. [1 ,2 ,3 ,4 ]
Vidorreta, I. M. [2 ,3 ]
Sebastian, V. [2 ,3 ]
Moro, A. [4 ]
Coelhoso, I. M. [4 ]
Portugal, C. A. M. [4 ]
Lima, J. C. [4 ]
Desiderio, G. [5 ]
Lombardo, G. [6 ]
Drioli, E. [1 ]
Mallada, R. [2 ,3 ]
Crespo, J. G. [4 ]
Criscuoli, A. [1 ]
Figoli, A. [1 ]
机构
[1] Inst Membrane Technol ITM CNR, Via P Bucci 17-C, I-87036 Arcavacata Di Rende, CS, Italy
[2] Univ Zaragoza, INA, C Mariano Esquillor S-N,D I Bldg, Zaragoza 50018, Spain
[3] Univ Zaragoza, Dept Chem Engn & Environm Technol, C Mariano Esquillor S-N,D I Bldg, Zaragoza 50018, Spain
[4] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Quim, LAQV,REQUIMTE, P-2829516 Caparica, Portugal
[5] Ist Nanotecnol CNR NANOTEC, Via P Bucci 31c, I-87036 Arcavacata Di Rende, CS, Italy
[6] CNR IPCF, Ist & Proc Chim Fis, Viale F Stagno DAlcontres 37, I-98158 Messina, Italy
关键词
Luminescent molecular probes; Electrospinning; Nanofibrous membrane; Direct contact membrane distillation; Thermal polarization; NANOFIBER MEMBRANES; ELECTROSPUN NANOFIBERS; MASS-TRANSFER; PVDF; DESALINATION; FABRICATION; FLUX; PERFORMANCE; MORPHOLOGY; PROGRESS;
D O I
10.1016/j.memsci.2017.05.001
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Membrane Distillation (MD) is a thermal membrane process allowing for a theoretical 100% rejection of nonvolatile compounds (i.e. ions, macromolecules, colloids, cells), whereas vapour molecules permeate through a micro-porous hydrophobic membrane due to a difference of vapour pressure established across the membrane-self. The effective driving force and, then, the vapour trans-membrane flux is affected by temperature polarization phenomena occurring in the boundary layers adjacent to the membrane. The temperature values at the membrane surface are usually difficult to measure and only recently some invasive techniques were adopted for this scope. The aim of this work was to introduce luminescent molecular probing as an innovative technology for non-invasive and in-situ monitoring of thermal polarization in MD. Tris(phenantroline) ruthenium(II) chloride (Ru (phen)(3)) was selected as temperature sensitive luminescent probe and immobilized in a flat poly(vinylidene fluoride) electrospun nanofibrous membrane (PVDF ENM). Experiments showed the key role of the Ru(phen)(3) and Lithium Chloride (LiCl) in the preparation of homogeneous PVDF ENM due to their ionic nature that improved the electrical conductivity of the polymeric solution favouring the electrospinning. Furthermore, PVDF ENM showed a good performance in Direct Contact Membrane Distillation (DCMD) process. The immobilization of the molecular probe allowed to optically monitoring the membrane surface temperature during DCMD experiments. On the other hand, the employment of an IR-camera permitted the evaluation of the temperature of the bulk of liquid streams. Therefore, the combination of these two optical techniques enabled to evaluate, in a direct and non-invasive way, the thermal polarization along the membrane module during DCMD experiments.
引用
收藏
页码:156 / 166
页数:11
相关论文
共 50 条
  • [41] Analysis and design of direct contact membrane distillation
    Deshpande, J.
    Nithyanandam, K.
    Pitchumani, R.
    JOURNAL OF MEMBRANE SCIENCE, 2017, 523 : 301 - 316
  • [42] Factors contributing to flux improvement in vacuum-enhanced direct contact membrane distillation
    Rao, Guiying
    Hiibel, Sage R.
    Achilli, Andrea
    Childress, Amy E.
    DESALINATION, 2015, 367 : 197 - 205
  • [43] Modeling and experimental validation of direct contact membrane distillation applied to synthetic dye solutions
    Madalosso, Heloisa Bremm
    de Sousa Silva, Regilene
    Merlini, Aline
    Battisti, Rodrigo
    Machado, Ricardo Antonio Francisco
    Marangoni, Cintia
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2021, 96 (04) : 909 - 922
  • [44] New insights into the role of carbon nanotubes spray-coated on both sides of the PTFE membrane in suppressing temperature polarization and enhancing water flux in direct contact membrane distillation
    Liu, Jun
    Xie, Baolei
    Mushtaq, Nazish
    Xu, Guorong
    Bar-Zeev, Edo
    Hu, Yunxia
    JOURNAL OF MEMBRANE SCIENCE, 2024, 689
  • [45] Intensify direct contact membrane distillation process by membrane aeration
    Dong C.
    Gao Q.
    Lü X.
    Jia W.
    Gao, Qijun (gqj2005@aliyun.com), 1913, Materials China (68): : 1913 - 1920
  • [46] Experimental comparison of direct contact membrane distillation (DCMD) with vacuum membrane distillation (VMD)
    Koo, Jaewuk
    Han, Jihee
    Sohn, Jinsik
    Lee, Sangho
    Hwang, Tae-Mun
    DESALINATION AND WATER TREATMENT, 2013, 51 (31-33) : 6299 - 6309
  • [47] Effects of surfactant types on membrane wetting and membrane hydrophobicity recovery in direct contact membrane distillation
    Chang, Jianghao
    Chang, Haiqing
    Meng, Yuchuan
    Zhao, Huaxin
    Lu, Mengzhe
    Liang, Ying
    Yan, Zhongsen
    Liang, Heng
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 301
  • [48] Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane
    Lee, Jung-Gil
    Kim, Young-Deuk
    Kim, Woo-Seung
    Francis, Lijo
    Amy, Gary
    Ghaffour, Noreddine
    JOURNAL OF MEMBRANE SCIENCE, 2015, 478 : 85 - 95
  • [49] Direct contact membrane distillation (DCMD): Experimental study on the commercial PTFE membrane and modeling
    Hwang, Ho Jung
    He, Ke
    Gray, Stephen
    Zhang, Jianhua
    Moon, Il Shik
    JOURNAL OF MEMBRANE SCIENCE, 2011, 371 (1-2) : 90 - 98
  • [50] Superhydrophobic polymer membrane coated by mineralized β-FeOOH nanorods for direct contact membrane distillation
    Li, Bang
    Yun, Yanbin
    Wang, Manxiang
    Li, Chunli
    Yang, Woochul
    Li, Jingwei
    Liu, Guicheng
    DESALINATION, 2021, 500