Jamming transition in a cellular automaton model for traffic flow

被引:76
作者
Eisenblatter, B [1 ]
Santen, L
Schadschneider, A
Schreckenberg, M
机构
[1] Gerhard Mercator Univ Duisburg, Fachbereich 10, D-47048 Duisburg, Germany
[2] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 02期
关键词
D O I
10.1103/PhysRevE.57.1309
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The cellular automaton model for traffic flow exhibits a jamming transition from a free-flow phase to a congested phase. In the deterministic case this transition corresponds to a critical point with diverging correlation length. Tn the presence of noise, however, no consistent picture has emerged up to now. We present data from numerical simulations that suggest the absence of critical behavior. The transition of the deterministic case is smeared out and one only observes the remnants of the critical point. [S1063-651X(98)03202-4].
引用
收藏
页码:1309 / 1314
页数:6
相关论文
共 22 条
[1]  
Barber M. N., 1983, PHASE TRANSITIONS CR, V8
[2]   Particle-hopping models of vehicular traffic: Distributions of distance headways and distance between jams [J].
Chowdhury, D ;
Ghosh, K ;
Majumdar, A ;
Sinha, S ;
Stinchcombe, RB .
PHYSICA A, 1997, 246 (3-4) :471-486
[3]   Scaling behaviour in discrete traffic models (vol 28, pg L427, 1995) [J].
Csanyi, G ;
Kertesz, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (02) :471-471
[4]   SCALING BEHAVIOR IN DISCRETE TRAFFIC MODELS [J].
CSANYI, G ;
KERTESZ, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (16) :L427-L432
[5]  
EISENBLATTER B, 1996, THESIS U DUISBURG
[6]   Fundamentals of traffic flow [J].
Helbing, D .
PHYSICAL REVIEW E, 1997, 55 (03) :3735-3738
[7]   CLUSTER EFFECT IN INITIALLY HOMOGENEOUS TRAFFIC FLOW [J].
KERNER, BS ;
KONHAUSER, P .
PHYSICAL REVIEW E, 1993, 48 (04) :R2335-R2338
[8]   Continuous limit of the Nagel-Schreckenberg model [J].
Krauss, S ;
Wagner, P ;
Gawron, C .
PHYSICAL REVIEW E, 1996, 54 (04) :3707-3712
[9]   Metastable states in a microscopic model of traffic flow [J].
Krauss, S ;
Wagner, P ;
Gawron, C .
PHYSICAL REVIEW E, 1997, 55 (05) :5597-5602
[10]   ON KINEMATIC WAVES .2. A THEORY OF TRAFFIC FLOW ON LONG CROWDED ROADS [J].
LIGHTHILL, MJ ;
WHITHAM, GB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1955, 229 (1178) :317-345