Exponential mixing property for automorphisms of compact Kahler manifolds

被引:0
作者
Wu, Hao [1 ]
机构
[1] Natl Univ Singapore, Dept Math, 10 Lower Kent Ridge Rd, SG-119076 Singapore, Singapore
来源
ARKIV FOR MATEMATIK | 2021年 / 59卷 / 01期
关键词
dynamic degree; equilibrium measure; exponential mixing; super-potential; SUPER-POTENTIALS; DYNAMICS; CURRENTS;
D O I
10.4310/ARKIV.2021.v59.n1.a8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a holomorphic automorphism of a compact Kahler manifold. Assume that f admits a unique maximal dynamic degree d(p) with only one eigenvalue of maximal modulus. Let mu be its equilibrium measure. In this paper, we prove that mu is exponentially mixing for all d.s.h. test functions.
引用
收藏
页码:213 / 227
页数:15
相关论文
共 50 条
[21]   Densities of Currents on Non-Kahler Manifolds [J].
Vu, Duc-Viet .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (17) :13282-13304
[22]   Local Nonautonomous Schrodinger Flows on Kahler Manifolds [J].
Jia, Zong Lin ;
Wang, You De .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (08) :1251-1299
[23]   THE CAUCHY PROBLEM FOR SCHRODINGER FLOWS INTO KAHLER MANIFOLDS [J].
Kenig, Carlos ;
Lamm, Tobias ;
Pollack, Daniel ;
Staffilani, Gigliola ;
Toro, Tatiana .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (02) :389-439
[24]   EQUILIBRIUM MEASURES OF MEROMORPHIC SELF-MAPS ON NON-KAHLER MANIFOLDS [J].
Duc-Viet Vu .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (03) :2229-2250
[25]   Automorphisms of rational manifolds of positive entropy with Siegel disks [J].
Oguiso, Keiji ;
Perroni, Fabio .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2011, 22 (04) :487-504
[26]   INVARIANT FORMS AND AUTOMORPHISMS OF LOCALLY HOMOGENEOUS MULTISYMPLECTIC MANIFOLDS [J].
Echeverria-Enriquez, Arturo ;
Ibort, Alberto ;
Munoz-Lecanda, Miguel C. ;
Roman-Roy, Narciso .
JOURNAL OF GEOMETRIC MECHANICS, 2012, 4 (04) :397-419
[27]   Automorphisms of positive entropy on some hyperKahler manifolds via derived automorphisms of K3 surfaces [J].
Ouchi, Genki .
ADVANCES IN MATHEMATICS, 2018, 335 :1-26
[28]   COMPACT LORENTZ MANIFOLDS WITH LOCAL SYMMETRY [J].
Melnick, Karin .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 81 (02) :355-390
[29]   EXPONENTIAL MIXING FOR SKEW PRODUCTS WITH DISCONTINUITIES [J].
Butterley, Oliver ;
Eslami, Peyman .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (02) :783-803
[30]   DYNAMICS AND ZETA FUNCTIONS ON CONFORMALLY COMPACT MANIFOLDS [J].
Rowlett, Julie ;
Suarez-Serrato, Pablo ;
Tapie, Samuel .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (04) :2459-2486