Interfacial Behavior of Recombinant Spider Silk Protein Parts Reveals Cues on the Silk Assembly Mechanism

被引:23
作者
Nileback, Linnea [1 ]
Arola, Suvi [2 ]
Kvick, Mathias [3 ]
Paananen, Arja [4 ]
Linder, Markus B. [2 ]
Hedhammar, My [1 ]
机构
[1] AlbaNova Univ Ctr, Sch Engn Sci Chem Biotechnol & Hlth, KTH Royal Inst Technol, Dept Prot Sci, SE-10691 Stockholm, Sweden
[2] Aalto Univ, Sch Chem Engn, Dept Bioprod & Biosyst, POB 16100, FI-00076 Aalto, Finland
[3] AlbaNova Univ Ctr, Spiber Technol AB, S-10691 Stockholm, Sweden
[4] VTT Tech Res Ctr Finland Ltd, Tietotie 2, FI-02150 Espoo, Finland
基金
芬兰科学院;
关键词
CIRCULAR-DICHROISM; FIBROIN; PH; VISCOELASTICITY; TRANSITION; STABILITY; STRESS; FIBERS; DUCT;
D O I
10.1021/acs.langmuir.8b02381
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The mechanism of silk assembly, and thus the cues for the extraordinary properties of silk, can be explored by studying the simplest protein parts needed for the formation of silk-like materials. The recombinant spider silk protein 4RepCT, consisting of four repeats of polyalanine and glycine-rich segments (4Rep) and a globular C-terminal domain (CT), has previously been shown to assemble into silk-like fibers at the liquid-air interface. Herein, we study the interfacial behavior of the two parts of 4RepCT, revealing new details on how each protein part is crucial for the silk assembly. Interfacial rheology and quartz crystal microbalance with dissipation show that 4Rep interacts readily at the interfaces. However, organized nanofibrillar structures are formed only when 4Rep is fused to CT. A strong interplay between the parts to direct the assembly is demonstrated. The presence of either a liquid-air or a liquid-solid interface had a surprisingly similar influence on the assembly.
引用
收藏
页码:11795 / 11805
页数:11
相关论文
共 36 条
[1]   Biomedical Applications of Recombinant Silk-Based Materials [J].
Aigner, Tamara Bernadette ;
DeSimone, Elise ;
Scheibel, Thomas .
ADVANCED MATERIALS, 2018, 30 (19)
[2]   Silk-based biomaterials [J].
Altman, GH ;
Diaz, F ;
Jakuba, C ;
Calabro, T ;
Horan, RL ;
Chen, JS ;
Lu, H ;
Richmond, J ;
Kaplan, DL .
BIOMATERIALS, 2003, 24 (03) :401-416
[3]   Silk Spinning in Silkworms and Spiders [J].
Andersson, Marlene ;
Johansson, Jan ;
Rising, Anna .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (08)
[4]   Carbonic Anhydrase Generates CO2 and H+ That Drive Spider Silk Formation Via Opposite Effects on the Terminal Domains [J].
Andersson, Marlene ;
Chen, Gefei ;
Otikovs, Martins ;
Landreh, Michael ;
Nordling, Kerstin ;
Kronqvist, Nina ;
Westermark, Per ;
Jornvall, Hans ;
Knight, Stefan ;
Ridderstrale, Yvonne ;
Holm, Lena ;
Meng, Qing ;
Jaudzems, Kristaps ;
Chesler, Mitchell ;
Johansson, Jan ;
Rising, Anna .
PLOS BIOLOGY, 2014, 12 (08)
[5]   Self-assembly of spider silk proteins is controlled by a pH-sensitive relay [J].
Askarieh, Glareh ;
Hedhammar, My ;
Nordling, Kerstin ;
Saenz, Alejandra ;
Casals, Cristina ;
Rising, Anna ;
Johansson, Jan ;
Knight, Stefan D. .
NATURE, 2010, 465 (7295) :236-U125
[6]   Spider silk protein refolding is controlled by changing pH [J].
Dicko, C ;
Vollrath, F ;
Kenney, JM .
BIOMACROMOLECULES, 2004, 5 (03) :704-710
[7]   Carbonic anhydrase generates a pH gradient in Bombyx mori silk glands [J].
Domigan, L. J. ;
Andersson, M. ;
Alberti, K. A. ;
Chesler, M. ;
Xu, Q. ;
Johansson, J. ;
Rising, A. ;
Kaplan, D. L. .
INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2015, 65 :100-106
[8]   Secondary Structure Transition and Critical Stress for a Model of Spider Silk Assembly [J].
Giesa, Tristan ;
Perry, Carole C. ;
Buehler, Markus J. .
BIOMACROMOLECULES, 2016, 17 (02) :427-436
[9]   Using circular dichroism spectra to estimate protein secondary structure [J].
Greenfield, Norma J. .
NATURE PROTOCOLS, 2006, 1 (06) :2876-2890
[10]   Molecular architecture of silk fibroin of Indian golden silkmoth, Antheraea assama [J].
Gupta, Adarsh K. ;
Mita, Kazuei ;
Arunkumar, Kallare P. ;
Nagaraju, Javaregowda .
SCIENTIFIC REPORTS, 2015, 5