Identification of candidate material systems for quantum dot solar cells including the effect of strain

被引:18
作者
Dahal, Som N. [1 ]
Bremner, Stephen P. [2 ]
Honsberg, Christiana B. [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[2] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
来源
PROGRESS IN PHOTOVOLTAICS | 2010年 / 18卷 / 04期
基金
美国国家科学基金会;
关键词
band edge alignment; intermediate band solar cells; lattice mismatch; quantum dots; strain; INTERMEDIATE-BAND; DEFORMATION; EFFICIENCY; INP;
D O I
10.1002/pip.937
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Heterostructures that include self-assembled quantum dots (SAQDs) have been suggested as model systems for the realization of novel high efficiency solar cells such as those based on intermediate bands (IBs). The lattice mismatch in the epitaxial growth of these structures, necessary for the formation of SAQDs, introduces strain throughout the structure, making the selection of materials systems with appropriate physical parameters problematic. The model solid theory is used to calculate the energy band edge alignment at Gamma point of such quantum dot (QD) heterostructures including the effects of strain. With the modified band gaps due to strain, a materials search was performed for high efficiency QD solar cells among III-V binaries and ternaries with negligible valence band offsets. This requirement of the valence band offset along with the limited band gap ranges for optimum efficiency results in only a few feasible materials systems being identified. The optimum barrier/dot material system found was Al0.57In0.43As/InP0.87Sb0.13 grown on lattice matched metamorphic buffer layer, but due to miscibility gap concerns it is suggested that the Al0.50In0.50As/InAs0.41P0.59 fully strained system may be preferred. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:233 / 239
页数:7
相关论文
共 29 条
[1]  
BIMBERG D, 1999, QUANTUM DOT HETEROST, P37
[2]   Detailed balance efficiency limits with quasi-Fermi level variations [J].
Bremner, SP ;
Corkish, R ;
Honsberg, CB .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1999, 46 (10) :1932-1939
[3]   Limiting efficiency of an intermediate band solar cell under a terrestrial spectrum [J].
Bremner, Stephen P. ;
Levy, Michael Y. ;
Honsberg, Christiana B. .
APPLIED PHYSICS LETTERS, 2008, 92 (17)
[4]   Characterization of MOVPE grown InPSb/InAs heterostructures [J].
Drews, D ;
Schneider, A ;
Werninghaus, T ;
Behres, A ;
Heuken, M ;
Heime, K ;
Zahn, DRT .
APPLIED SURFACE SCIENCE, 1998, 123 :746-750
[5]   Effects of absorbed group-V atoms on the size distribution and optical properties of InAsP quantum dots fabricated by the droplet hetero-epitaxy [J].
Fuchi, S. ;
Miyake, S. ;
Kawamura, S. ;
Lee, W. S. ;
Ujihara, T. ;
Takeda, Y. .
JOURNAL OF CRYSTAL GROWTH, 2008, 310 (7-9) :2239-2243
[6]   MOVPE growth of InPSb/InAs heterostructures for mid-infrared emitters [J].
Heuken, M ;
EichelStreiber, CV ;
Behres, A ;
Schineller, B ;
Heime, K ;
Mendorf, C ;
Brockt, G ;
Lakner, H .
JOURNAL OF ELECTRONIC MATERIALS, 1997, 26 (10) :1221-1224
[7]   Design trade-offs and rules for multiple energy level solar cells [J].
Honsberg, CB ;
Bremner, SP ;
Corkish, R .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 14 (1-2) :136-141
[8]   Nanostructured absorbers for multiple transition solar cells [J].
Levy, Michael Y. ;
Honsberg, Christiana .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (03) :706-711
[9]   Solar cell with an intermediate band of finite width [J].
Levy, Michael Y. ;
Honsberg, Christiana .
PHYSICAL REVIEW B, 2008, 78 (16)
[10]   Experimental analysis of the operation of quantum dot intermediate band solar cells [J].
Lopez, N. ;
Marti, A. ;
Luque, A. ;
Stanley, C. ;
Farmer, C. ;
Diaz, P. .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2007, 129 (03) :319-322