Modelling and analysing interval data

被引:15
作者
Brito, Paula [1 ]
机构
[1] Univ Porto, NIAAD, LIACC, Fac Econ, P-4200 Oporto, Portugal
来源
ADVANCES IN DATA ANALYSIS | 2007年
关键词
D O I
10.1007/978-3-540-70981-7_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we discuss some issues which arise when applying classical data analysis techniques to interval data, focusing on the notions of dispersion, association and linear combinations of interval variables. We present some methods that have been proposed for analysing this kind of data, namely for clustering, discriminant analysis, linear regression and interval time series analysis.
引用
收藏
页码:197 / 208
页数:12
相关论文
共 15 条
[1]  
[Anonymous], 2002, Classification, Clustering, and Data Analysis
[2]  
Bertrand P, 2000, ST CLASS DAT ANAL, P106
[3]   From the statistics of data to the statistics of knowledge: Symbolic data analysis [J].
Billard, L ;
Diday, E .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (462) :470-487
[4]  
Bock H.-H., 2002, J. Japanese Soc. Comput. Statist, V15, P1, DOI 10.5183/jjscs1988.15.1
[5]  
Bock HH., 2000, ANAL SYMBOLIC DATA
[6]   Dynamic clustering for interval data based on L2 distance [J].
de Carvalho, Francisco de A. T. ;
Brito, Paula ;
Bock, Hans-Hermann .
COMPUTATIONAL STATISTICS, 2006, 21 (02) :231-250
[7]   Clustering of interval data based on city-block distances [J].
de Souza, RMCR ;
de Carvalho, FDT .
PATTERN RECOGNITION LETTERS, 2004, 25 (03) :353-365
[8]  
Diday E., 1976, Digital pattern recognition, P47
[9]  
DIDAY E, 2006, IN PRESS SYMBOLIC DA
[10]  
Douzal A., 2000, EXPLORATORY METHODS, P200