iTOP: inferring the topology of omics data

被引:14
作者
Aben, Nanne [1 ,2 ]
Westerhuis, Johan A. [3 ]
Song, Yipeng [3 ]
Kiers, Henk A. L. [4 ]
Michaut, Magali [1 ]
Smilde, Age K. [3 ]
Wessels, Lodewyk F. A. [1 ,2 ,5 ]
机构
[1] Netherlands Canc Inst, Oncode Inst, Div Mol Carcinogenesis, NL-1066 CX Amsterdam, Netherlands
[2] Delft Univ Technol, Fac EEMCS, NL-2628 CD Delft, Netherlands
[3] Univ Amsterdam, Swammerdam Inst Life Sci, NL-1098 XH Amsterdam, Netherlands
[4] Univ Groningen, Heymans Inst, NL-9712 CP Groningen, Netherlands
[5] Canc Genom Netherlands, NL-3584 CT Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
CANCER;
D O I
10.1093/bioinformatics/bty636
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: In biology, we are often faced with multiple datasets recorded on the same set of objects, such as multi-omics and phenotypic data of the same tumors. These datasets are typically not independent from each other. For example, methylation may influence gene expression, which may, in turn, influence drug response. Such relationships can strongly affect analyses performed on the data, as we have previously shown for the identification of biomarkers of drug response. Therefore, it is important to be able to chart the relationships between datasets. Results: We present iTOP, a methodology to infer a topology of relationships between datasets. We base this methodology on the RV coefficient, a measure of matrix correlation, which can be used to determine how much information is shared between two datasets. We extended the RV coefficient for partial matrix correlations, which allows the use of graph reconstruction algorithms, such as the PC algorithm, to infer the topologies. In addition, since multi-omics data often contain binary data (e.g. mutations), we also extended the RV coefficient for binary data. Applying iTOP to pharmacogenomics data, we found that gene expression acts as a mediator between most other datasets and drug response: only proteomics clearly shares information with drug response that is not present in gene expression. Based on this result, we used TANDEM, a method for drug response prediction, to identify which variables predictive of drug response were distinct to either gene expression or proteomics.
引用
收藏
页码:988 / 996
页数:9
相关论文
共 17 条
[1]   TANDEM: a two-stage approach to maximize interpretability of drug response models based on multiple molecular data types [J].
Aben, Nanne ;
Vis, Daniel J. ;
Michaut, Magali ;
Wesseis, Lodewyk F. A. .
BIOINFORMATICS, 2016, 32 (17) :413-420
[2]  
[Anonymous], 2002, P 19 INT C MACH LEAR
[3]  
Colombo D, 2014, J MACH LEARN RES, V15, P3741
[4]   Systematic identification of genomic markers of drug sensitivity in cancer cells [J].
Garnett, Mathew J. ;
Edelman, Elena J. ;
Heidorn, Sonja J. ;
Greenman, Chris D. ;
Dastur, Anahita ;
Lau, King Wai ;
Greninger, Patricia ;
Thompson, I. Richard ;
Luo, Xi ;
Soares, Jorge ;
Liu, Qingsong ;
Iorio, Francesco ;
Surdez, Didier ;
Chen, Li ;
Milano, Randy J. ;
Bignell, Graham R. ;
Tam, Ah T. ;
Davies, Helen ;
Stevenson, Jesse A. ;
Barthorpe, Syd ;
Lutz, Stephen R. ;
Kogera, Fiona ;
Lawrence, Karl ;
McLaren-Douglas, Anne ;
Mitropoulos, Xeni ;
Mironenko, Tatiana ;
Thi, Helen ;
Richardson, Laura ;
Zhou, Wenjun ;
Jewitt, Frances ;
Zhang, Tinghu ;
O'Brien, Patrick ;
Boisvert, Jessica L. ;
Price, Stacey ;
Hur, Wooyoung ;
Yang, Wanjuan ;
Deng, Xianming ;
Butler, Adam ;
Choi, Hwan Geun ;
Chang, JaeWon ;
Baselga, Jose ;
Stamenkovic, Ivan ;
Engelman, Jeffrey A. ;
Sharma, Sreenath V. ;
Delattre, Olivier ;
Saez-Rodriguez, Julio ;
Gray, Nathanael S. ;
Settleman, Jeffrey ;
Futreal, P. Andrew ;
Haber, Daniel A. .
NATURE, 2012, 483 (7391) :570-U87
[5]   A Landscape of Pharmacogenomic Interactions in Cancer [J].
Iorio, Francesco ;
Knijnenburg, Theo A. ;
Vis, Daniel J. ;
Bignell, Graham R. ;
Menden, Michael P. ;
Schubert, Michael ;
Aben, Nanne ;
Goncalves, Emanuel ;
Barthorpe, Syd ;
Lightfoot, Howard ;
Cokelaer, Thomas ;
Greninger, Patricia ;
van Dyk, Ewald ;
Chang, Han ;
de Silva, Heshani ;
Heyn, Holger ;
Deng, Xianming ;
Egan, Regina K. ;
Liu, Qingsong ;
Mironenko, Tatiana ;
Mitropoulos, Xeni ;
Richardson, Laura ;
Wang, Jinhua ;
Zhang, Tinghu ;
Moran, Sebastian ;
Sayols, Sergi ;
Soleimani, Maryam ;
Tamborero, David ;
Lopez-Bigas, Nuria ;
Ross-Macdonald, Petra ;
Esteller, Manel ;
Gray, Nathanael S. ;
Haber, Daniel A. ;
Stratton, Michael R. ;
Benes, Cyril H. ;
Wessels, Lodewyk F. A. ;
Saez-Rodriguez, Julio ;
McDermott, Ultan ;
Garnett, Mathew J. .
CELL, 2016, 166 (03) :740-754
[6]   Characterization of Human Cancer Cell Lines by Reverse-phase Protein Arrays [J].
Li, Jun ;
Zhao, Wei ;
Akbani, Rehan ;
Liu, Wenbin ;
Ju, Zhenlin ;
Ling, Shiyun ;
Vellano, Christopher P. ;
Roebuck, Paul ;
Yu, Qinghua ;
Eterovic, A. Karina ;
Byers, Lauren A. ;
Davies, Michael A. ;
Deng, Wanleng ;
Gopal, Y. N. Vashisht ;
Chen, Guo ;
von Euw, Erika M. ;
Slamon, Dennis ;
Conklin, Dylan ;
Heymach, John V. ;
Gazdar, Adi F. ;
Minna, John D. ;
Myers, Jeffrey N. ;
Lu, Yiling ;
Mills, Gordon B. ;
Liang, Han .
CANCER CELL, 2017, 31 (02) :225-239
[7]  
MANTEL N, 1967, CANCER RES, V27, P209
[8]   Exploratory Analysis of Multiple Omics Datasets Using the Adjusted RV Coefficient [J].
Mayer, Claus-Dieter ;
Lorent, Julie ;
Horgan, Graham W. .
STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2011, 10 (01)
[9]  
Peter SpirtesClark N Glymour Richard Scheines., 2000, Causation, prediction, and search
[10]  
ROBERT P, 1976, ROY STAT SOC C-APP, V25, P257