Idempotent States on Locally Compact Quantum Groups II

被引:10
作者
Salmi, Pekka [1 ]
Skalski, Adam [2 ]
机构
[1] Univ Oulu, Dept Math Sci, PL 3000, FI-90014 Oulu, Finland
[2] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
关键词
SUBGROUPS; THEOREM;
D O I
10.1093/qmath/haw045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Correspondence between idempotent states and expected right-invariant subalgebras is extended to non-coamenable, non-unimodular locally compact quantum groups; in particular left convolution operators are shown to automatically preserve the right Haar weight.
引用
收藏
页码:421 / 431
页数:11
相关论文
共 21 条
[1]   Categorical Aspects of Quantum Groups: Multipliers and Intrinsic Groups [J].
Daws, Matthew .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2016, 68 (02) :309-333
[2]   The Haagerup property for locally compact quantum groups [J].
Daws, Matthew ;
Fima, Pierre ;
Skalski, Adam ;
White, Stuart .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 711 :189-229
[3]   REMARKS ON THE QUANTUM BOHR COMPACTIFICATION [J].
Daws, Matthew .
ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (04) :1131-1171
[4]   Completely positive definite functions and Bochner's theorem for locally compact quantum groups [J].
Daws, Matthew ;
Salmi, Pekka .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (07) :1525-1546
[5]   COMPLETELY POSITIVE MULTIPLIERS OF QUANTUM GROUPS [J].
Daws, Matthew .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (12)
[6]   Closed quantum subgroups of locally compact quantum groups [J].
Daws, Matthew ;
Kasprzak, Pawel ;
Skalski, Adam ;
Soltan, Piotr M. .
ADVANCES IN MATHEMATICS, 2012, 231 (06) :3473-3501
[7]   Integration over the quantum diagonal subgroup and associated Fourier-like algebras [J].
Franz, Uwe ;
Lee, Hun Hee ;
Skalski, Adam .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (09)
[8]   Idempotent states on compact quantum groups and their classification on Uq(2), SUq(2), and SOq(3) [J].
Franz, Uwe ;
Skalski, Adam ;
Tomatsu, Reiji .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2013, 7 (01) :221-254
[9]   A new characterisation of idempotent states on finite and compact quantum groups [J].
Franz, Uwe ;
Skalski, Adam .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (17-18) :991-996
[10]   On idempotent states on quantum groups [J].
Franz, Uwe ;
Skalski, Adam .
JOURNAL OF ALGEBRA, 2009, 322 (05) :1774-1802