The Veterans Affairs Precision Oncology Data Repository, a Clinical, Genomic, and Imaging Research Database

被引:8
作者
Elbers, Danne C. [1 ,2 ]
Fillmore, Nathanael R. [1 ,3 ,4 ]
Sung, Feng-Chi [1 ]
Ganas, Spyridon S. [1 ]
Prokhorenkov, Andrew [5 ]
Meyer, Christopher [5 ]
Hall, Robert B. [1 ]
Ajjarapu, Samuel J. [1 ,4 ]
Chen, Daniel C. [1 ,6 ]
Meng, Frank [1 ,6 ]
Grossman, Robert L. [5 ]
Brophy, Mary T. [1 ,6 ]
Do, Nhan, V [1 ,6 ]
机构
[1] VA Boston Healthcare Syst, VA Cooperat Studies Program, 151MAV,150 S Huntington Ave, Jamaica Plain, MA 02130 USA
[2] Univ Vermont, Complex Syst Ctr, Burlington, VT 05405 USA
[3] Harvard Med Sch, Boston, MA 02115 USA
[4] Dana Farber Canc Inst, Boston, MA 02215 USA
[5] Univ Chicago, Ctr Data Intens Sci, Chicago, IL 60615 USA
[6] Boston Univ, Sch Med, Boston, MA 02118 USA
来源
PATTERNS | 2020年 / 1卷 / 06期
关键词
data commons; data integration; data sharing; de-identification; DSML 3: Development/Pre-production: Data science output has been rolled out/validated across multiple domains/problems; genomic data; healthcare; outcomes research; precision oncology; secondary use of clinical data; translational research;
D O I
10.1016/j.patter.2020.100083
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Veterans Affairs Precision Oncology Data Repository (VA-PODR) is a large, nationwide repository of deidentified data on patients diagnosed with cancer at the Department of Veterans Affairs (VA). Data include longitudinal clinical data from the VA's nationwide electronic health record system and the VA Central Cancer Registry, targeted tumor sequencing data, and medical imaging data including computed tomography (CT) scans and pathology slides. A subset of the repository is available at the Genomic Data Commons (GDC) and The Cancer Imaging Archive (TCIA), and the full repository is available through the Veterans Precision Oncology Data Commons (VPODC). By releasing this de-identified dataset, we aim to advance Veterans' health care through enabling translational research on the Veteran population by a wide variety of researchers.
引用
收藏
页数:7
相关论文
共 26 条
  • [1] [Anonymous], 2016, GEN DAT COMM PORT
  • [2] [Anonymous], 2016, FACT SHEET CANC MOON
  • [3] VistA - US Department of Veterans Affairs National-Scale HIS
    Brown, SH
    Lincoln, MJ
    Groen, PJ
    Kolokner, RM
    [J]. INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2003, 69 (2-3) : 135 - 156
  • [4] Cancer Moonshot Blue Ribbon Panel, 2016, BLUE RIBB REP 2016
  • [5] External validation of a prognostic model for mortality among patients with non-small-cell lung cancer using the Veterans Precision Oncology Data Commons
    Cheng, David
    Ramos-Cejudo, Jaime
    Tuck, David
    Elbers, Danne
    Brophy, Mary
    Do, Nhan
    Fillmore, Nathanael
    [J]. SEMINARS IN ONCOLOGY, 2019, 46 (4-5) : 327 - 333
  • [6] The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
    Clark, Kenneth
    Vendt, Bruce
    Smith, Kirk
    Freymann, John
    Kirby, Justin
    Koppel, Paul
    Moore, Stephen
    Phillips, Stanley
    Maffitt, David
    Pringle, Michael
    Tarbox, Lawrence
    Prior, Fred
    [J]. JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) : 1045 - 1057
  • [7] The development of large-scale de-identified biomedical databases in the age of genomics-principles and challenges
    Dankar, Fida K.
    Ptitsyn, Andrey
    Dankar, Samar K.
    [J]. HUMAN GENOMICS, 2018, 12
  • [8] The Veterans Precision Oncology Data Commons: Transforming VA data into a national resource for research in precision oncology
    Do, Nhan
    Grossman, Robert
    Feldman, Theodore
    Fillmore, Nathanael
    Elbers, Danne
    Tuck, David
    Dhond, Rupali
    Selva, Luis
    Meng, Frank
    Fitzsimons, Michael
    Ajjarapu, Samuel
    Ayandeh, Siamack
    Hall, Robert
    Do, Stephanie
    Brophy, Mary
    [J]. SEMINARS IN ONCOLOGY, 2019, 46 (4-5) : 314 - 320
  • [9] Multisite Image Data Collection and Management Using the RSNA Image Sharing Network
    Erickson, Bradley J.
    Fajnwaks, Patricio
    Langer, Steve G.
    Perry, John
    [J]. TRANSLATIONAL ONCOLOGY, 2014, 7 (01) : 36 - 39
  • [10] A predictive model for survival in non-small cell lung cancer (NSCLC) based on electronic health record (EHR) and tumor sequencing data at the Department of Veterans Affairs (VA).
    Fillmore, Nathanael
    Ramos-Cejudo, Jamie
    Cheng, David
    Tuck, David P.
    Sheikh, Ayesha Rizwan
    Chen, Daniel
    Elbers, Danne
    Sung, Feng-Chi
    Johnson, Brett
    Shannon, Colleen
    Pierce-Murray, Karen
    Gaynor, Kelly
    Dedomenico, Corri
    Schiller, Sarah
    Ajjarapu, Samuel
    Hall, Robert
    Ayandeh, Siamack
    Meng, Frank
    Brophy, Mary T.
    Nhan Do
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (15)