Improving protein fold recognition by random forest

被引:49
作者
Jo, Taeho [1 ]
Cheng, Jianlin [1 ]
机构
[1] Univ Missouri, C Bond Life Sci Ctr, Inst Informat, Dept Comp Sci, Columbia, MO 65211 USA
来源
BMC BIOINFORMATICS | 2014年 / 15卷
基金
美国国家卫生研究院;
关键词
PROFILE-PROFILE ALIGNMENT; HIDDEN MARKOV-MODELS; PSI-BLAST; SEQUENCE; PREDICTION; CLASSIFICATION; INFORMATION; EVOLUTIONARY; DATABASE; TOOL;
D O I
10.1186/1471-2105-15-S11-S14
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Recognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting whether or not the unknown fold of a target protein is similar to an already known template protein structure in a library, machine learning methods have been effectively applied to tackle this problem. In our work, we developed RF-Fold that uses random forest - one of the most powerful and scalable machine learning classification methods - to recognize protein folds. Results: RF-Fold consists of hundreds of decision trees that can be trained efficiently on very large datasets to make accurate predictions on a highly imbalanced dataset. We evaluated RF-Fold on the standard Lindahl's benchmark dataset comprised of 976 x 975 target-template protein pairs through cross-validation. Compared with 17 different fold recognition methods, the performance of RF-Fold is generally comparable to the best performance in fold recognition of different difficulty ranging from the easiest family level, the medium-hard superfamily level, and to the hardest fold level. Based on the top-one template protein ranked by RF-Fold, the correct recognition rate is 84.5%, 63.4%, and 40.8% at family, superfamily, and fold levels, respectively. Based on the top-five template protein folds ranked by RF-Fold, the correct recognition rate increases to 91.5%, 79.3% and 58.3% at family, superfamily, and fold levels. Conclusions: The good performance achieved by the RF-Fold demonstrates the random forest's effectiveness for protein fold recognition.
引用
收藏
页数:7
相关论文
共 48 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   The universal protein resource (UniProt) [J].
Bairoch, Amos ;
Bougueleret, Lydie ;
Altairac, Severine ;
Amendolia, Valeria ;
Auchincloss, Andrea ;
Puy, Ghislaine Argoud ;
Axelsen, Kristian ;
Baratin, Delphine ;
Blatter, Marie-Claude ;
Boeckmann, Brigitte ;
Bollondi, Laurent ;
Boutet, Emmanuel ;
Quintaje, Silvia Braconi ;
Breuza, Lionel ;
Bridge, Alan ;
deCastro, Edouard ;
Coral, Danielle ;
Coudert, Elisabeth ;
Cusin, Isabelle ;
Dobrokhotov, Pavel ;
Dornevil, Dolnide ;
Duvaud, Severine ;
Estreicher, Anne ;
Famiglietti, Livia ;
Feuermann, Marc ;
Gehant, Sebastian ;
Farriol-Mathis, Nathalie ;
Ferro, Serenella ;
Gasteiger, Elisabeth ;
Gateau, Alain ;
Gerritsen, Vivienne ;
Gos, Arnaud ;
Gruaz-Gumowski, Nadine ;
Hinz, Ursula ;
Hulo, Chantal ;
Hulo, Nicolas ;
Ioannidis, Vassilios ;
Ivanyi, Ivan ;
James, Janet ;
Jain, Eric ;
Jimenez, Silvia ;
Jungo, Florence ;
Junker, Vivien ;
Keller, Guillaume ;
Lachaize, Corinne ;
Lane-Guermonprez, Lydie ;
Langendijk-Genevaux, Petra ;
Lara, Vicente ;
Lemercier, Philippe ;
Le Saux, Virginie .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D193-D197
[3]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[4]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]  
Chawla N. V., 2004, ACM SIGKDD Explorations Newsletter, V6, P1
[7]   PFRES: protein fold classification by using evolutionary information and predicted secondary structure [J].
Chen, Ke ;
Kurgan, Lukasz .
BIOINFORMATICS, 2007, 23 (21) :2843-2850
[8]   SCRATCH: a protein structure and structural feature prediction server [J].
Cheng, J ;
Randall, AZ ;
Sweredoski, MJ ;
Baldi, P .
NUCLEIC ACIDS RESEARCH, 2005, 33 :W72-W76
[9]   A machine learning information retrieval approach to protein fold recognition [J].
Cheng, Jianlin ;
Baldi, Pierre .
BIOINFORMATICS, 2006, 22 (12) :1456-1463
[10]  
Cheng Jianlin, 2008, IEEE Rev Biomed Eng, V1, P41, DOI 10.1109/RBME.2008.2008239