CHARACTERIZATION OF CYCLE OBSTRUCTION SETS FOR IMPROPER COLORING PLANAR GRAPHS

被引:3
作者
Choi, Ilkyoo [1 ]
Liu, Chun-Hung [2 ]
Oum, Sang-Il [3 ,4 ]
机构
[1] Hankuk Univ Foreign Studies, Dept Math, Yongin, Gyeonggi Do, South Korea
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[3] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
[4] KIAS, Sch Math, Seoul, South Korea
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
graph coloring; improper coloring; defective coloring; planar graphs; obstruction sets; SPARSE GRAPHS; GIRTH; MAP;
D O I
10.1137/16M1106882
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For nonnegative integers k, d(1),...,d(k), a graph is (d(1),...,d(k))-colorable if its vertex set can be partitioned into k parts so that the ith part induces a graph with maximum degree at most d(i) for all i is an element of{1,...,k}. A class C of graphs is balanced k-partitionable and unbalanced k-partitionable if there exists a nonnegative integer D such that all graphs in C are (D,...,D)-colorable and (0,...,0, D)-colorable, respectively, where the tuple has length k. A set X of cycles is a cycle obstruction set of a class C of planar graphs if every planar graph containing none of the cycles in X as a subgraph belongs to C. This paper characterizes all cycle obstruction sets of planar graphs to be balanced k-partitionable and unbalanced k-partitionable for all k; namely, we identify all inclusionwise minimal cycle obstruction sets for all k.
引用
收藏
页码:1209 / 1228
页数:20
相关论文
共 25 条
[1]   EVERY PLANAR MAP IS 4 COLORABLE .1. DISCHARGING [J].
APPEL, K ;
HAKEN, W .
ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) :429-490
[2]   EVERY PLANAR MAP IS 4 COLORABLE .2. REDUCIBILITY [J].
APPEL, K ;
HAKEN, W ;
KOCH, J .
ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) :491-567
[3]   Defective 2-colorings of sparse graphs [J].
Borodin, O. V. ;
Kostochka, A. V. .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 104 :72-80
[4]   On 1-improper 2-coloring of sparse graphs [J].
Borodin, O. V. ;
Kostochka, A. ;
Yancey, M. .
DISCRETE MATHEMATICS, 2013, 313 (22) :2638-2649
[5]   Vertex Decompositions of Sparse Graphs into an Edgeless Subgraph and a Subgraph of Maximum Degree at Most k [J].
Borodin, O. V. ;
Ivanova, A. O. ;
Montassier, M. ;
Ochem, P. ;
Raspaud, A. .
JOURNAL OF GRAPH THEORY, 2010, 65 (02) :83-93
[6]   Three-coloring planar graphs without short cycles [J].
Chen, Min ;
Raspaud, Andre ;
Wang, Weifan .
INFORMATION PROCESSING LETTERS, 2007, 101 (03) :134-138
[7]   (1, k)-Coloring of Graphs with Girth at Least Five on a Surface [J].
Choi, Hojin ;
Choi, Ilkyoo ;
Jeong, Jisu ;
Suh, Geewon .
JOURNAL OF GRAPH THEORY, 2017, 84 (04) :521-535
[8]  
Choi I., 2016, ARXIV160302841
[9]   Planar graphs with girth at least 5 are (3,5)-colorable [J].
Choi, Ilkyoo ;
Raspaud, Andre .
DISCRETE MATHEMATICS, 2015, 338 (04) :661-667
[10]   Steinberg's Conjecture is false [J].
Cohen-Addad, Vincent ;
Hebdige, Michael ;
Kral, Daniel ;
Li, Zhentao ;
Salgado, Esteban .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 :452-456