CHARACTERIZATION OF CYCLE OBSTRUCTION SETS FOR IMPROPER COLORING PLANAR GRAPHS

被引:3
作者
Choi, Ilkyoo [1 ]
Liu, Chun-Hung [2 ]
Oum, Sang-Il [3 ,4 ]
机构
[1] Hankuk Univ Foreign Studies, Dept Math, Yongin, Gyeonggi Do, South Korea
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[3] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
[4] KIAS, Sch Math, Seoul, South Korea
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
graph coloring; improper coloring; defective coloring; planar graphs; obstruction sets; SPARSE GRAPHS; GIRTH; MAP;
D O I
10.1137/16M1106882
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For nonnegative integers k, d(1),...,d(k), a graph is (d(1),...,d(k))-colorable if its vertex set can be partitioned into k parts so that the ith part induces a graph with maximum degree at most d(i) for all i is an element of{1,...,k}. A class C of graphs is balanced k-partitionable and unbalanced k-partitionable if there exists a nonnegative integer D such that all graphs in C are (D,...,D)-colorable and (0,...,0, D)-colorable, respectively, where the tuple has length k. A set X of cycles is a cycle obstruction set of a class C of planar graphs if every planar graph containing none of the cycles in X as a subgraph belongs to C. This paper characterizes all cycle obstruction sets of planar graphs to be balanced k-partitionable and unbalanced k-partitionable for all k; namely, we identify all inclusionwise minimal cycle obstruction sets for all k.
引用
收藏
页码:1209 / 1228
页数:20
相关论文
共 25 条
  • [1] EVERY PLANAR MAP IS 4 COLORABLE .1. DISCHARGING
    APPEL, K
    HAKEN, W
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) : 429 - 490
  • [2] EVERY PLANAR MAP IS 4 COLORABLE .2. REDUCIBILITY
    APPEL, K
    HAKEN, W
    KOCH, J
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) : 491 - 567
  • [3] Defective 2-colorings of sparse graphs
    Borodin, O. V.
    Kostochka, A. V.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 104 : 72 - 80
  • [4] On 1-improper 2-coloring of sparse graphs
    Borodin, O. V.
    Kostochka, A.
    Yancey, M.
    [J]. DISCRETE MATHEMATICS, 2013, 313 (22) : 2638 - 2649
  • [5] Vertex Decompositions of Sparse Graphs into an Edgeless Subgraph and a Subgraph of Maximum Degree at Most k
    Borodin, O. V.
    Ivanova, A. O.
    Montassier, M.
    Ochem, P.
    Raspaud, A.
    [J]. JOURNAL OF GRAPH THEORY, 2010, 65 (02) : 83 - 93
  • [6] Three-coloring planar graphs without short cycles
    Chen, Min
    Raspaud, Andre
    Wang, Weifan
    [J]. INFORMATION PROCESSING LETTERS, 2007, 101 (03) : 134 - 138
  • [7] (1, k)-Coloring of Graphs with Girth at Least Five on a Surface
    Choi, Hojin
    Choi, Ilkyoo
    Jeong, Jisu
    Suh, Geewon
    [J]. JOURNAL OF GRAPH THEORY, 2017, 84 (04) : 521 - 535
  • [8] Choi I., 2016, ARXIV160302841
  • [9] Planar graphs with girth at least 5 are (3,5)-colorable
    Choi, Ilkyoo
    Raspaud, Andre
    [J]. DISCRETE MATHEMATICS, 2015, 338 (04) : 661 - 667
  • [10] Steinberg's Conjecture is false
    Cohen-Addad, Vincent
    Hebdige, Michael
    Kral, Daniel
    Li, Zhentao
    Salgado, Esteban
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 : 452 - 456