Data-driven parameterization of polymer electrolyte membrane fuel cell models via simultaneous local linear structured state space identification

被引:17
作者
Ritzberger, Daniel [1 ]
Hoeflinger, Johannes [2 ]
Du, Zhang Peng [1 ]
Hametner, Christoph [3 ]
Jakubek, Stefan [1 ]
机构
[1] TU Wien, Inst Mech & Mechatron, Getreidemarkt 9, A-1060 Vienna, Austria
[2] TU Wien, Inst Powertrains & Automot Technol, Getreidemarkt 9, A-1060 Vienna, Austria
[3] Christian Doppler Lab Innovat Control & Monitorin, Getreidemarkt 9, A-1060 Vienna, Austria
关键词
Polymer electrolyte membrane fuel cell; Control oriented fuel cell model; Experimental parameterization; Grey-box estimation; Parametric sensitivity; POWER-SYSTEM; EXCHANGE; WATER; IDENTIFIABILITY; OPTIMIZATION; DEGRADATION; PERFORMANCE; EXTRACTION; CHALLENGES; TRANSPORT;
D O I
10.1016/j.ijhydene.2021.01.037
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to mitigate the degradation and prolong the lifetime of polymer electrolyte membrane fuel cells, advanced, model-based control strategies are becoming indispensable. Thereby, the availability of accurate yet computationally efficient fuel cell models is of crucial importance. Associated with this is the need to efficiently parameterize a given model to a concise and cost-effective experimental data set. A challenging task due to the large number of unknown parameters and the resulting complex optimization problem. In this work, a parameterization scheme based on the simultaneous estimation of multiple structured state space models, obtained by analytic linearization of a candidate fuel cell stack model, is proposed. These local linear models have the advantage of high computational efficiency, regaining the desired flexibility required for the typically iterative task of model parameterization. Due to the analytic derivation of the local linear models, the relation to the original parameters of the non-linear model is retained. Furthermore, the local linear models enable a straight-forward parameter significance and identifiability analysis with respect to experimental data. The proposed method is demonstrated using experimental data from a 30 kW commercial polymer electrolyte membrane fuel cell stack. (C) 2021 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
引用
收藏
页码:11878 / 11893
页数:16
相关论文
共 46 条
[1]   Modeling and Identification of Nonlinear Systems: A Review of the Multimodel Approach-Part 1 [J].
Adeniran, Ahmed Adebowale ;
El Ferik, Sami .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (07) :1149-1159
[2]  
[Anonymous], 2014, New insights and perspectives on the natural gradient method
[3]  
[Anonymous], 1999, MATH METHODS STAT
[4]  
[Anonymous], 2011, IFAC Proceedings Volumes
[5]  
Chen L.L. T., 2013, IFAC P VOLUMES, V46, P1, DOI 10.3182/20130703-3-FR-4038.00155
[6]   Recent advances and challenges of fuel cell based power system architectures and control - A review [J].
Das, Vipin ;
Padmanaban, Sanjeevikumar ;
Venkitusamy, Karthikeyan ;
Selvamuthukumaran, Rajasekar ;
Blaabjerg, Frede ;
Siano, Pierluigi .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 73 :10-18
[7]   Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell [J].
Dutta, S ;
Shimpalee, S ;
Van Zee, JW .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2001, 44 (11) :2029-2042
[8]   EXPERIMENTAL-DETERMINATION OF THE TRANSPORT NUMBER OF WATER IN NAFION-117 MEMBRANE [J].
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (05) :1332-1337
[9]   Challenges and developments of automotive fuel cell hybrid power system and control [J].
Gao, Jinwu ;
Li, Meng ;
Hu, Yunfeng ;
Chen, Hong ;
Ma, Yan .
SCIENCE CHINA-INFORMATION SCIENCES, 2019, 62 (05)
[10]   Introductory overview of identifiability analysis: A guide to evaluating whether you have the right type of data for your modeling purpose [J].
Guillaume, Joseph H. A. ;
Jakeman, John D. ;
Marsili-Libelli, Stefano ;
Asher, Michael ;
Brunner, Philip ;
Croke, Barry ;
Hill, Mary C. ;
Jakeman, Anthony J. ;
Keesman, Karel J. ;
Razavi, Saman ;
Stigter, Johannes D. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2019, 119 :418-432