Quantum Critical Metrology

被引:98
作者
Frerot, Irenee [1 ,2 ]
Roscilde, Tommaso [1 ,3 ]
机构
[1] Univ Lyon, Ens Lyon, Univ Claude Bernard, CNRS,Lab Phys, F-69342 Lyon, France
[2] Barcelona Inst Sci & Technol, Inst Ciencies Foton, ICFO, Barcelona 08860, Spain
[3] Inst Univ France, 103 Blvd St Michel, F-75005 Paris, France
关键词
ENTANGLEMENT; GENERATION; STATES;
D O I
10.1103/PhysRevLett.121.020402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum metrology fundamentally relies upon the efficient management of quantum uncertainties. We show that under equilibrium conditions the management of quantum noise becomes extremely flexible around the quantum critical point of a quantum many-body system: this is due to the critical divergence of quantum fluctuations of the order parameter, which, via Heisenberg's inequalities, may lead to the critical suppression of the fluctuations in conjugate observables. Taking the quantum Ising model as the paradigmatic incarnation of quantum phase transitions, we show that it exhibits quantum critical squeezing of one spin component, providing a scaling for the precision of interferometric parameter estimation which, in dimensions d > 2, lies in between the standard quantum limit and the Heisenberg limit. Quantum critical squeezing saturates the maximum metrological gain allowed by the quantum Fisher information in d = infinity (or with infinite-range interactions) at all temperatures, and it approaches closely the bound in a broad range of temperatures in d = 2 and 3. This demonstrates the immediate metrological potential of equilibrium many-body states close to quantum criticality, which are accessible, e.g., to atomic quantum simulators via elementary adiabatic protocols.
引用
收藏
页数:6
相关论文
共 49 条
[1]  
[Anonymous], 2004, Quantum Squeezing
[2]   Cluster Monte Carlo simulation of the transverse Ising model -: art. no. 066110 [J].
Blöte, HWJ ;
Deng, YJ .
PHYSICAL REVIEW E, 2002, 66 (06) :8
[3]   Quantum spin dynamics and entanglement generation with hundreds of trapped ions [J].
Bohnet, Justin G. ;
Sawyer, Brian C. ;
Britton, Joseph W. ;
Wall, Michael L. ;
Rey, Ana Maria ;
Foss-Feig, Michael ;
Bollinger, John J. .
SCIENCE, 2016, 352 (6291) :1297-1301
[4]   SIZE SCALING FOR INFINITELY COORDINATED SYSTEMS [J].
BOTET, R ;
JULLIEN, R ;
PFEUTY, P .
PHYSICAL REVIEW LETTERS, 1982, 49 (07) :478-481
[5]   Infinite-range Ising ferromagnet in a time-dependent transverse magnetic field: Quench and ac dynamics near the quantum critical point [J].
Das, Arnab ;
Sengupta, K. ;
Sen, Diptiman ;
Chakrabarti, Bikas K. .
PHYSICAL REVIEW B, 2006, 74 (14)
[6]   Dynamic structure factor of the spin-1/2 transverse Ising chain [J].
Derzhko, O ;
Krokhmalskii, T .
PHYSICAL REVIEW B, 1997, 56 (18) :11659-11665
[7]   Finite-size scaling exponents of the Lipkin-Meshkov-Glick model [J].
Dusuel, S ;
Vidal, J .
PHYSICAL REVIEW LETTERS, 2004, 93 (23)
[8]  
Frerot I., ARXIV180503140
[9]  
Frerot I., IN PRESS
[10]   Quantum variance: A measure of quantum coherence and quantum correlations for many-body systems [J].
Frerot, Irenee ;
Roscilde, Tommaso .
PHYSICAL REVIEW B, 2016, 94 (07)