Robust Keyword Spotting via Recycle-Pooling for Mobile Game

被引:0
|
作者
An, Shounan [1 ]
Kim, Youngsoo [1 ]
Xu, Hu [1 ]
Lee, Jinwoo [1 ]
Lee, Myungwoo [2 ]
Oh, Insoo [3 ]
机构
[1] Netmarble, NARC, Game Dev AI Team, Seoul, South Korea
[2] Netmarble, NARC, Game Contents AI Team, Seoul, South Korea
[3] Netmarble, NARC, Magellan Div, Seoul, South Korea
来源
INTERSPEECH 2019 | 2019年
关键词
keyword spotting; recycle-pooling; convolutional neural network; mobile games;
D O I
暂无
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
We present an effective method to solve a small-footprint keyword spotting (KWS) task via deep neural network for mobile game. Our goal is to improve the accuracy of KWS in various environments. To this end, we propose a new neural network layer named recycle-pooling. Extensive experiments indicate that our recycle-pooling based convolutional neural network (RP-CNN) indeed improves the performance of KWS in both clean and noisy data for mobile game. We will perform live demonstration of RP-CNN based KWS integrated into a full-sized, production-quality mobile game A3: Still Alive, which is one of the major games from Netmarble this year and will be available on market soon.
引用
收藏
页码:3661 / 3662
页数:2
相关论文
共 39 条
  • [1] ROBUST REPRESENTATIONS FOR KEYWORD SPOTTING SYSTEMS
    Smyth, Aidan
    Lyons, Niall
    Wada, Ted
    Zopf, Robert
    Pandey, Ashutosh
    Santra, Avik
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 3210 - 3215
  • [2] Streaming keyword spotting on mobile devices
    Rybakov, Oleg
    Kononenko, Natasha
    Subrahmanya, Niranjan
    Visontai, Mirko
    Laurenzo, Stella
    INTERSPEECH 2020, 2020, : 2277 - 2281
  • [3] State sequence pooling training of acoustic models for keyword spotting
    Lopatka, Kuba
    Bocklet, Tobias
    INTERSPEECH 2020, 2020, : 4338 - 4342
  • [4] DYNAMIC CURRICULUM LEARNING VIA DATA PARAMETERS FOR NOISE ROBUST KEYWORD SPOTTING
    Higuchi, Takuya
    Saxena, Shreyas
    Souden, Mehrez
    Tien Dung Tran
    Delfarah, Masood
    Dhir, Chandra
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 6848 - 6852
  • [5] Temporal Convolution for Real-time Keyword Spotting on Mobile Devices
    Choi, Seungwoo
    Seo, Seokjun
    Shin, Beomjun
    Byun, Hyeongmin
    Kersner, Martin
    Kim, Beomsu
    Kim, Dongyoung
    Ha, Sungjoo
    INTERSPEECH 2019, 2019, : 3372 - 3376
  • [6] Prototypical Knowledge Distillation for Noise Robust Keyword Spotting
    Kim, Donghyeon
    Kim, Gwantae
    Lee, Bokyeung
    Ko, Hanseok
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2298 - 2302
  • [7] Multi-scale Convolution for Robust Keyword Spotting
    Yang, Chen
    Wen, Xue
    Song, Liming
    INTERSPEECH 2020, 2020, : 2577 - 2581
  • [8] Noisy student-teacher training for robust keyword spotting
    Park, Hyun-Jin
    Zhu, Pai
    Moreno, Ignacio Lopez
    Subrahmanya, Niranjan
    INTERSPEECH 2021, 2021, : 331 - 335
  • [9] Depthwise-Separable Residual Capsule for Robust Keyword Spotting
    Huang, Xianghong
    Yang, Qun
    Liu, Shaohan
    MULTIMEDIA MODELING, MMM 2022, PT II, 2022, 13142 : 194 - 204
  • [10] Robust and efficient keyword spotting using a bidirectional attention LSTM
    Swain O.P.
    Hemanth H.
    Saran P.
    Kothandaraman M.
    Ravi L.
    Sailor H.
    Rajesh K.S.
    International Journal of Speech Technology, 2023, 26 (04) : 919 - 931