Mutually unbiased bases and finite projective planes

被引:72
作者
Saniga, M [1 ]
Planat, M
Rosu, H
机构
[1] Slovak Acad Sci, Inst Astron, Tatranska Lomnica 05960, Slovakia
[2] CNRS, Dept LPMO, Inst FEMTO ST, F-25044 Besancon, France
[3] IPICyT, Dept Appl Math, San Luis Potosi, Mexico
关键词
mutually unbiased bases; MUBs; finite projective planes; Hopf fibrations;
D O I
10.1088/1464-4266/6/9/L01
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is conjectured that the question of the existence of a set of d + I mutually unbiased bases in a d-dimensional Hilbert space if d differs from a power of a prime number is intimately linked with the problem of whether there exist projective planes whose order d is not a power of a prime number.
引用
收藏
页码:L19 / L20
页数:2
相关论文
共 22 条
[1]  
ARAVIND PK, 2002, QUANTPH0210007
[2]  
Baez JC, 2002, B AM MATH SOC, V39, P145
[3]   A new proof for the existence of mutually unbiased bases [J].
Bandyopadhyay, S ;
Boykin, PO ;
Roychowdhury, V ;
Vatan, F .
ALGORITHMICA, 2002, 34 (04) :512-528
[4]  
BENGTSSON I, 2004, QUANTPH0406174
[5]   Geometry of the three-qubit state, entanglement and division algebras [J].
Bernevig, BA ;
Chen, HD .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (30) :8325-8339
[6]  
Beutelspacher A., 1998, PROJECTIVE GEOMETRY
[7]   THE NONEXISTENCE OF CERTAIN FINITE PROJECTIVE PLANES [J].
BRUCK, RH ;
RYSER, HJ .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1949, 1 (01) :88-93
[8]   Z(4)-Kerdock codes, orthogonal spreads, and extremal euclidean line-sets [J].
Calderbank, AR ;
Cameron, PJ ;
Kantor, WM ;
Seidel, JJ .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1997, 75 :436-480
[9]   Security of quantum key distribution using d-level systems -: art. no. 127902 [J].
Cerf, NJ ;
Bourennane, M ;
Karlsson, A ;
Gisin, N .
PHYSICAL REVIEW LETTERS, 2002, 88 (12) :4-127902
[10]   Aspects of mutually unbiased bases in odd-prime-power dimensions [J].
Chaturvedi, S .
PHYSICAL REVIEW A, 2002, 65 (04) :3