Coherence-gated photoacoustic remote sensing microscopy

被引:16
作者
Bell, Kevan L. [1 ,2 ]
Hajireza, Parsin [2 ,3 ]
Zemp, Roger J. [1 ,2 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada
[2] Illumison Inc, 1400-10303 Jasper Ave NW, Edmonton, AB T5J 3N6, Canada
[3] Univ Waterloo, Dept Syst Design Engn, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
INTERFEROMETER;
D O I
10.1364/OE.26.023689
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photoacoustic remote sensing microscopy (PARS) represents a new paradigm within the optical imaging community by providing high sensitivity (>50 dB in vivo) non-contact optical absorption contrast in scattering media with a reflection-mode configuration. Unlike contact-based photoacoustic modalities which can acquire complete A-scans with a single excitation pulse due to slow acoustic propagation facilitating the use of time-gated collection of returning acoustic signals, PARS provides depth resolution only through optical sectioning. Here we introduce a new approach for providing coherence-gated depth-resolved PARS imaging using a difference between pulsed-interrogation optical coherence tomography scan-lines with and without excitation pulses. Proposed methods are validated using simulations which account for pulsed-laser induced initial-pressures and accompanying refractive index changes. The changes in refractive index are shown to be proportional to optical absorption. It is demonstrated that to achieve optimal image quality, several key parameters must be selected including interrogation pulse duration and delay. The proposed approach offers the promise of non-contact depth-resolved optical absorption contrast at optical-resolution scales and may complement the scattering contrast offered by optical coherence tomography. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:23689 / 23704
页数:16
相关论文
共 34 条
[1]   OCT Amplitude and Speckle Statistics of Discrete Random Media [J].
Almasian, Mitra ;
van Leeuwen, Ton G. ;
Faber, Dirk J. .
SCIENTIFIC REPORTS, 2017, 7
[2]  
[Anonymous], 2005, Computational Electrodynamics: the Finite-Difference Time-Domain Method
[3]  
[Anonymous], 2015, OPT COHERENCE TOMOGR, DOI [10.1007/978-3-319-06419-2_3, DOI 10.17660/ACTAHORTIC.2012.969.35, DOI 10.1007/978-3-319-06419-2_2]
[4]   Scattering cross-sectional modulation in photoacoustic remote sensing microscopy [J].
Bell, Kevan ;
Hajireza, Parsin ;
Zemp, Roger .
OPTICS LETTERS, 2018, 43 (01) :146-149
[5]   Temporal evolution of low-coherence reflectrometry signals in photoacoustic remote sensing microscopy [J].
Bell, Kevan L. ;
Hajireza, Parsin ;
Shi, Wei ;
Zemp, Roger J. .
APPLIED OPTICS, 2017, 56 (18) :5172-5181
[6]   Multimodal noncontact photoacoustic and optical coherence tomography imaging using wavelength-division multiplexing [J].
Berer, Thomas ;
Leiss-Holzinger, Elisabeth ;
Hochreiner, Armin ;
Bauer-Marschallinger, Johannes ;
Buchsbaum, Andreas .
JOURNAL OF BIOMEDICAL OPTICS, 2015, 20 (04)
[7]  
Bouma B., 2001, HANDBOOK OF OPTICAL
[8]  
Chen Z., 2016, SPIE COS PHOTONICS A
[9]   Non-contact optoacoustic imaging with focused air-coupled transducers [J].
Dean-Ben, X. Luis ;
Pang, Genny A. ;
de Espinosa, Francisco Montero ;
Razansky, Daniel .
APPLIED PHYSICS LETTERS, 2015, 107 (05)
[10]  
Eichenfield Lawrence F., 1999, Current Opinion in Pediatrics, V11, P471, DOI 10.1097/00008480-199910000-00017