Kirchhoff Equations with Choquard Exponential Type Nonlinearity Involving the Fractional Laplacian

被引:1
作者
Goyal, Sarika [1 ]
Mukherjee, Tuhina [2 ]
机构
[1] Bennett Univ, Dept Math, Greater Noida 201310, Uttar Pradesh, India
[2] Indian Inst Technol Jodhpur, Dept Math, Jodhpur 342037, Rajasthan, India
关键词
Doubly non local problems; Kirchhoff equation; Choquard nonlinearity; Trudinger-Moser nonlinearity; EXISTENCE; MULTIPLICITY; GUIDE;
D O I
10.1007/s10440-021-00402-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we deal with the existence of non-negative solutions of the class of following non local problem {-M(integral(Rn)integral(Rn) | u(x)- u(y)|(n/s)/ |x - y|(2n) dxdy) (- Delta)(n/s)(s) u = (integral(Omega) G(y, u)/|x - y|(mu) dy) g(x, u) in Omega, u = 0 in R-n\Omega, where (-Delta)(n/s)(s) is the n/s-fractional Laplace operator, n >= 1, s is an element of (0, 1) such that n/s >= 2, Omega subset of R-n is a bounded domain with Lipschitz boundary, M : R+ -> R+ and g : Omega x R -> R are continuous functions, where g behaves like exp(|u|(n/n-s)) as |u| -> infinity. The key feature of this article is the presence of Kirchhoff model along with convolution type nonlinearity having exponential growth which appears in several physical and biological models.
引用
收藏
页数:24
相关论文
共 27 条
[1]  
Alves CO, 2017, J CONVEX ANAL, V24, P1197
[2]   Existence and concentration of ground state solutions for a critical nonlocal Schrodinger equation in R2 [J].
Alves, Claudianor O. ;
Cassani, Daniele ;
Tarsi, Cristina ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) :1933-1972
[3]  
[Anonymous], 1954, Untersuchung uiber die Elektronentheorie der Kristalle, DOI DOI 10.1515/9783112649305
[4]  
Applebaum D., 2004, Notices Am. Math. Soc., V51, P1336
[5]   n-Kirchhoff-Choquard equations with exponential nonlinearity [J].
Arora, R. ;
Giaeomoni, J. ;
Mukherjee, T. ;
Sreenadh, K. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 186 :113-144
[6]   The fractional Cheeger problem [J].
Brasco, L. ;
Lindgren, E. ;
Parini, E. .
INTERFACES AND FREE BOUNDARIES, 2014, 16 (03) :419-458
[7]   STABILITY OF VARIATIONAL EIGENVALUES FOR THE FRACTIONAL p-LAPLACIAN [J].
Brasco, Lorenzo ;
Parini, Enea ;
Squassina, Marco .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (04) :1813-1845
[8]  
Brezis H, 2011, UNIVERSITEXT, P1
[9]  
Caffarelli L., 2012, NONLINEAR PARTIAL DI, V7, P37, DOI [10.1007/978-3-642-25361-4_3, DOI 10.1007/978-3-642-25361-4_3]
[10]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260