Nanowire Hydrogen Gas Sensor Employing CMOS Micro-hotplate
被引:5
作者:
Ali, S. Z.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Cambridge, EnglandUniv Cambridge, Cambridge, England
Ali, S. Z.
[1
]
论文数: 引用数:
h-index:
机构:
Santra, S.
[1
]
论文数: 引用数:
h-index:
机构:
Haneef, I.
[1
]
Schwandt, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Cambridge, EnglandUniv Cambridge, Cambridge, England
Schwandt, C.
[1
]
论文数: 引用数:
h-index:
机构:
Kumar, R. V.
[1
]
Milne, W. I.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Cambridge, EnglandUniv Cambridge, Cambridge, England
Milne, W. I.
[1
]
论文数: 引用数:
h-index:
机构:
Udrea, F.
[1
]
Guha, P. K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Warwick, Coventry, W Midlands, EnglandUniv Cambridge, Cambridge, England
Guha, P. K.
[2
]
Covington, J. A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Warwick, Coventry, W Midlands, EnglandUniv Cambridge, Cambridge, England
Covington, J. A.
[2
]
Gardner, J. W.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Warwick, Coventry, W Midlands, EnglandUniv Cambridge, Cambridge, England
Gardner, J. W.
[2
]
Garofalo, V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Naples Federico II, Naples, ItalyUniv Cambridge, Cambridge, England
Garofalo, V.
[3
]
机构:
[1] Univ Cambridge, Cambridge, England
[2] Univ Warwick, Coventry, W Midlands, England
[3] Univ Naples Federico II, Naples, Italy
来源:
2009 IEEE SENSORS, VOLS 1-3
|
2009年
基金:
英国工程与自然科学研究理事会;
关键词:
OPTIMIZATION;
DESIGN;
D O I:
10.1109/ICSENS.2009.5398224
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
In this paper we present a novel hydrogen gas sensor comprising a high temperature SOI-MOS micro-hotplate and employing zinc oxide nanowires as the sensing material. The micro-hotplates were fabricated at a commercial SOI foundry followed by a backside deep reactive ion etch (DRIE) at a commercial MEMS foundry. Particular care was taken in designing the heater shape using a systematic parametric approach to achieve excellent temperature uniformity (within 1-2%) as shown by both simulations and experimental infra-red imaging results. Zinc oxide nanowires were grown on these devices and show promising responses to hydrogen with a response (R-a/R-h) of 50 at 100 ppm in argon. The devices possess a low D.C. power consumption of only 16 mW at 300 degrees C and, being CMOS compatible, offer low unit cost in high volumes and full circuit integration. We believe that these devices have potential for application as a sub-$1 hydrogen sensor with sub-1mW (pulsed mode) power consumption.